Supporting Information

A Borate Concentrated, Crosslinked Gel Polymer Electrolyte with Near-Single Ion Conduction for Lithium Metal Batteries

Kuan Dai, ^a Cheng Ma, ^aYiming Feng, ^a Liangjun Zhou, ^aGuichao Kuang, ^a Yun Zhang, ^bYanqing Lai, ^aXinwei Cui^{c,*} and Weifeng Wei^{a,*}

^a State Key Laboratory of Powder Metallurgy, Central South University, Changsha,

Hunan 410083, China

^b Department of Advanced Energy Materials, College of Materials Science and

Engineering, Sichuan University, Chengdu 610064, China

^c College of Materials Science and Engineering, Zhengzhou University, Zhengzhou

450001, P. R. China

* Corresponding authors: Weifeng Wei, Xinwei Cui

E-mail: weifengwei@csu.edu.cn; langocui@hotmail.com

Figure S1. (a) ¹³C-NMR spectrum of the LBC (b) FT-IR spectra of the TMB, PEG,

GMMA and LBC.

Figure S2. (a)¹³C-NMR spectrum of TBC (b) FT-IR spectra of TMB, PEGMA and

TBC.

Figure S3. TGA thermograms of 3D-BGPE and cellulose membrane.

Figure S4. Thermal shrinkage of the 3D cross-linking membrane (left) and a commercial separator (right) (a) before and (b) after exposure to 150°C for 10 min.

Figure S5. Optical photographs of the LE and 3D-BGPE.

Figure S6. Stress-strain curves of 3D-BGPE and cellulose membrane.

Figure S7. Ionic conductivity dependence on EC/DMC concentration for gel polymer

electrolyte at 30 °C.

Figure S8. EIS of a SS|3D-BGPE|SS symmetrical cell with the elevation of

temperature.

Figure S9. Current variation with polarization of a Li|LE|Li symmetrical cell with an applied potential of 10 mV and EIS before and after polarization.

Figure S10. Linear sweeping voltammetry curves of the Li/3D-BGPE/SS cell and

Li/LE/SS cell at 30 °C.

Figure S11. Cycling performance of LiFePO₄/3D-BGPE/ Li cell at 2C at 30 °C.

Battery sample -	After 10 cycles			After 50 cycles		
	$R_{\rm b}$	$R_{ m f}$	$R_{\rm ct}$	R_{b}	$R_{ m f}$	$R_{\rm ct}$
3D-BGPE	2.95	39.0	41.0	3.65	41.7	42.1
Liquid electrolyte	2.75	10.5	23.1	4.62	26.5	32.9

Table S1. EIS results of the LiFePO4 /3D-BGPE/ Li and LiFePO4/LE/Li cells after10 cycles and 50 cycles at 0.5 C

The EIS curves were analyzed using an equivalent circuit by Z-view software. In the equivalent circuit, R_b represents bulk resistance, R_f represents interface resistance, R_{ct} represents charge transfer resistance, Z_w represents Warburg impedance, and CPE1 and CPE2 are the constant phase elements. The simulation results are summarized in **Table S1**. It is apparently seen that the LiFePO₄/3D-BGPE/Li cell displays an interfacial resistance (R_f and R_{ct}) with negligible variance after 10 cycles and 50 cycles, while the interfacial resistance of LiFePO₄/LE/Li cell increases noticeably. The negligible variance in interfacial resistance suggests that the interface between electrode and 3D-BGPE keeps steady during charge-discharge cycles, which leads to the superior cycling stability of LiFePO₄/3D-BGPE/Li cell as shown in Figure 6c.