## < Electronic Supplementary Information>

## Two-step Growth of CsPbI<sub>3-x</sub>Br<sub>x</sub> Films Employing Dynamic CsBr Treatment: Toward All-inorganic Perovskite Photovoltaics with Enhanced Stability

Bhaskar Parida <sup>1</sup>), Jun Ryu <sup>1</sup>), Saemon Yoon <sup>1</sup>), Seojun Lee <sup>1</sup>), Yejin Seo <sup>1</sup>), Jung Sang Cho <sup>2</sup>), and Dong-Won Kang <sup>1,\*</sup>)

<sup>1)</sup> School of Energy Systems Engineering, Chung-Ang University, Seoul 06974, Republic of Korea

<sup>2)</sup> Department of Engineering Chemistry, Chungbuk National University, 28644, Republic of Korea



Figure S1. Photographic images showing the solubility of (a) 15 mg and (b) 20 mg CsBr in 1 mL of methanol.



Figure S2. Photographic images of the fabrication process for  $\alpha$ -CsPbI<sub>3-x</sub>Br<sub>x</sub> perovskite films (a-c) without and (e-g) with a dynamic coating of various concentrations of CsBr (5–15 mg) and drying at 100 °C and (i-k) annealing at 300 °C. (d) The  $\alpha$ -CsPbI<sub>3</sub> film prepared using room temperature (RT) drying that (h) degraded to  $\delta$ -CsPbI<sub>3</sub> after annealing at 300 °C.



Figure S3. Photographic images of  $\alpha$ -CsPbI<sub>3-x</sub>Br<sub>x</sub> perovskite films prepared using the (a) drop and run and (b) dynamic drop-casting of a 15-mg CsBr solution.



Figure S4. Top-view FE-SEM images of CsBr-15 perovskite film with grain sizes over 2 µm.



Figure S5. EDX spectra of the (a) CsBr-0, (b) CsBr-5, (c) CsBr-10, and (d) CsBr-15 perovskite films prepared with and without a dynamic CsBr coating.



Figure S6. Cross-sectional EDX mapping profile of the CsBr-15 perovskite film.



Figure S7. J–V characteristic curves for the CsPbI<sub>3-x</sub>  $Br_x$  inorganic PSCs fabricated with a dynamic CsBr coating using the increased precursor concentration (20 mg/mL, heated at 50 °C) as well as the property of the champion CsBr-15 device (CsBr 15 mg/mL at room temperature).



Figure S8. Hysteresis behavior of the CsPbI<sub>3-x</sub>  $Br_x$  PSCs fabricated (a) without CsBr and (b-d) with dynamic CsBr-5, CsBr-10, and CsBr-15 coatings as revealed by reverse and forward scans.

Table S1. Hysteresis behavior of the  $CsPbI_{3-x}Br_x$  PSCs fabricated (a) without CsBr and (b-d) with dynamic treatment CsBr-5, CsBr-10, and CsBr-15 coatings as revealed by reverse and forward scans.

| Sample  | Direction | PCE (%) | $V_{oc}$ (V) | J <sub>sc</sub> (mA/cm <sup>2</sup> ) | FF (%) |
|---------|-----------|---------|--------------|---------------------------------------|--------|
| CsBr-0  | RS        | 8.40    | 0.88         | 17.20                                 | 56.47  |
|         | FS        | 8.33    | 0.87         | 17.44                                 | 54.69  |
| CsBr-5  | RS        | 9.63    | 0.96         | 15.23                                 | 66.02  |
|         | FS        | 8.66    | 0.92         | 15.58                                 | 60.46  |
| CsBr-10 | RS        | 11.81   | 1.06         | 15.54                                 | 71.33  |
|         | FS        | 10.66   | 1.01         | 15.88                                 | 66.77  |
| CsBr-15 | RS        | 14.08   | 1.12         | 16.36                                 | 76.87  |
|         | FS        | 12.18   | 1.06         | 16.29                                 | 69.90  |

| Ref.<br>No.               | Device<br>structure                                                                                       | Temp.<br>(°C) | R.H.<br>(%) | Initial<br>PCE (%) | PCE<br>Decay<br>(%) | Storage<br>Time (h) |  |  |  |
|---------------------------|-----------------------------------------------------------------------------------------------------------|---------------|-------------|--------------------|---------------------|---------------------|--|--|--|
| N <sub>2</sub> atmosphere |                                                                                                           |               |             |                    |                     |                     |  |  |  |
| R2.1                      | ITO/ZnO/ Cs <sub>1.2</sub> PbI <sub>2</sub> Br <sub>1.2</sub><br>/P3HT/Au                                 | 70            | < 20        | 9.8                | 30                  | 500                 |  |  |  |
| R2.2                      | FTO/NiMgLiO/CsPbI <sub>2</sub> B<br>r/PCBM/BCP/Ag                                                         | 85            | < 20        | 9.14               | 10                  | 500                 |  |  |  |
| R2.3                      | FTO/PTAA/CsPbI <sub>3</sub> /<br>PCBM/BCP/Ag                                                              | RT            | < 10        | 13.32              | 15                  | 720                 |  |  |  |
| R2.4                      | FTO/TiO <sub>2</sub> /CsPbl <sub>3</sub> -<br>PTABr/Spiro-<br>OMeTAD/Au                                   | RT            | < 10        | 17.06              | 9                   | 500                 |  |  |  |
| Our<br>work               | ITO/TiO <sub>2</sub> /CsPbI <sub>3</sub> .<br><sub>x</sub> Br <sub>x</sub> /P3HT/Au                       | RT            | <10         | 14.08              | 30                  | 1200                |  |  |  |
|                           |                                                                                                           |               |             |                    |                     |                     |  |  |  |
| Air atmosphere            |                                                                                                           |               |             |                    |                     |                     |  |  |  |
| R2.5                      | FTO/TiO <sub>2</sub> /<br>Cs <sub>0.925</sub> K <sub>0.075</sub> PbI <sub>2</sub> Br /<br>Spiro-OMeTAD/Au | RT            | 20          | 10.0               | 20                  | 144                 |  |  |  |
| [24]                      | FTO/TiO <sub>2</sub> /<br>CsPbI <sub>2.98</sub> Br <sub>0.2</sub> /Spiro-<br>OMeTAD/Au                    | RT            | 20          | 10.92              | 0                   | 192                 |  |  |  |
| R2.6                      | FTO/TiO <sub>2</sub> /CsPbIBr <sub>2</sub><br>/Spiro-OMeTAD/Au                                            | RT            | 25          | 7.31               | 50                  | 100                 |  |  |  |
| [14]                      | FTO/TiO <sub>2</sub> /CsPb <sub>0.96</sub> Bi <sub>0.04</sub><br>I <sub>3</sub> /CuI/Au                   | RT            | 55          | 13.21              | 32                  | 168                 |  |  |  |
| R2.7                      | FTO/TiO <sub>2</sub> /CsPbI <sub>3</sub><br>QDs/Spiro-<br>OMeTAD/MoO <sub>x</sub> /Al                     | RT            | 40-60       | 10.77              | 74                  | 48                  |  |  |  |
| Our<br>work               | ITO/TiO <sub>2</sub> /CsPbI <sub>3-</sub><br><sub>x</sub> Br <sub>x</sub> /P3HT/Au                        | 85            | 40          | 14.08              | 0                   | 48                  |  |  |  |

Table S2. A summary of stability results on recently reported inorganic PSCs.

[R2.1] L. A. Frolova, Q. Chang, S. Y. Luchkin, D. Zhao, A. F. Akbulatov, N. N. Dremova, A. V. Ivanov, E. E. M. Chia, K. J. Stevenson and P. A. Troshin, Efficient and stable all-inorganic perovskite solar cells based on nonstoichiometric Cs<sub>x</sub>PbI<sub>2</sub>Br<sub>x</sub> (x > 1) alloys, J. Mater. Chem. C, 2019,7, 5314-5323.

[R2.2] S. Zhang, S. Wu, W. Chen, H. Zhu, Z. Xiong, Z. Yang, C. Chen, R. Chen, L. Han and W. Chen, Solvent engineering for efficient inverted perovskite solar cells based on inorganic CsPbI<sub>2</sub>Br light absorber, Materials Today Energy 2018, 8, 125-133.

- [R2.3] T. Wu, Y. Wang, Z. Dai, D. Cui, T. Wang, X. Meng, E. Bi, X. Yang, and L. Han, Efficient and Stable CsPbI3 Solar Cells via Regulating Lattice Distortion with Surface Organic Terminal Groups, Adv. Mater. 2019, 1900605.
- [R2.4] Y. Wang, T. Zhang, M. Kan, Y. Zhao, Bifunctional Stabilization of All-Inorganic α-CsPbI<sub>3</sub> Perovskite for 17% Efficiency Photovoltaics, Journal of the American Chemical Society, 140 (2018) 12345-12348.
- [R2.5] J.K. Nam, S.U. Chai, W. Cha, Y.J. Choi, W. Kim, M.S. Jung, J. Kwon, D. Kim, J.H. Park, Potassium Incorporation for Enhanced Performance and Stability of Fully Inorganic Cesium Lead Halide Perovskite Solar Cells, Nano Letters, 17 (2017) 2028-2033.
- [R2.6] J. Lu, S-C. Chen, and Q. Zheng, Defect Passivation of CsPbIBr<sub>2</sub> Perovskites for High-Performance Solar Cells with Large Open-Circuit Voltage of 1.28 V, ACS Appl. Energy Mater. 2018, 1, 5872–5878.
- [R2.7] A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore, J.A. Christians, T. Chakrabarti, J.M. Luther, Quantum dot–induced phase stabilization of α-CsPbI<sub>3</sub> perovskite for highefficiency photovoltaics, Science, 354 (2016) 92-95.



Figure S9. Stabilized photocurrent and PCE of the (a) CsBr-0 and (b) CsBr-15 inorganic PSCs.



Figure S10. PCE distribution histograms for 20 devices of the  $CsPbI_{3-x}Br_x$  PSCs fabricated (a) without CsBr (CsBr-0, CsPbI<sub>3</sub>) and (b-d) with dynamic CsBr-5, CsBr-10, and CsBr-15 treatment.



Figure S11. J-V curves (measured in atmospheric air ambient) of the unencapsulated CsBr-15 all-inorganic perovskite solar cells stored in a nitrogen-ambient for over 1200 h. The inset table presents the performance of fresh and stored devices.



Figure S12. Normalized (a)  $V_{oc}$ , (b)  $J_{sc}$  (c) FF, and (d) PCE as a function of time for the CsBr-15 PSC without encapsulation, measured under ambient air at the temperature of 85 °C and RH of 40% for 48 h.