Supplementary Materials for

Superflexible C₆₈-graphyne as promising anode materials for lithium-ion batteries

Bozhao Wu¹, Xiangzheng Jia¹, Yanlei Wang², Jinxi Hu¹, Enlai Gao^{1*} and Ze Liu^{1*}

¹Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China.

²Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.

*Corresponding authors. Email: <u>enlaigao@whu.edu.cn</u>; <u>ze.liu@whu.edu.cn</u>

The Supporting Materials contain

- Supplementary Figures S1-S9.
- Supplementary Tables S1-S2.

Fig. S1 (a) Schematic diagram of γ -GY and (b) its primitive cell, different bonds are marked as B₁₋₃.

Fig. S2 (a) The fluctuation of bonds, angles and lattice constant of C_{68} -GY during the AIMD simulations. The quadratic dispersion of flexural phonon mode ZA in (b) C_{68} -GY and (c) graphene, in which the red lines denote the fitting curves.

Fig. S3 Projected density of state (PDOS) of (a) pristine C₆₈-GY with an adsorbed Li on Site (b) S1, (c) S3 and (d) S4.

Fig. S4 Effect of biaxial strain (ϵ) on the band structures of C₆₈-GY.

Fig. S5 (a) The K-path in the Brillouin zone for the calculation of carrier mobilities. (b) The calculated band structure along Y-K-X path at PBE functional level. Band energy shit of (c) CBM and (d) VBM under the strain along *x*- and *y*-direction. The term E_1 is determined by using $E_1=\Delta E/\varepsilon$ to fit the curves in (c) and (d). The dashed lines belong to the fitting lines with respect to *x*- and *y*-direction, respectively.

Fig. S6 (a) Schematics of the diffusion path in bilayer C_{68} -graphyne along diffusion path of P1 (side view); (b) the diffusion barrier profile.

Fig. S7 The fluctuations of (a) temperature and energy in the AIMD simulations of LiC, as well as (b) the lattice changes, a/a_0 ; (c) Top and (d) side views of the snapshots of LiC taken from AIMD simulations. The green and blue spheres represent Li and C atoms, respectively.

Fig. S8 (a-d) Top and side views of the intermediate configurations with different Li ion concentrations along the minimum formation energy path. (e-g) The considered configurations with varying Li concentrations intercalated in bilayer C_{68} -GY.

Fig. S9 (a) The calculated adsorption energy and lattice change profiles along the minimum energy path of formation energies as shown as green points in Fig. 6a; (b) The specific capacity (*C*) of C₆₈-GY as anode materials for LIBs, and the comparison with other typical carbon allotropes. The data for graphene, α -GY, γ -GY and GDY are obtained from **Refs. 1-7**.

Materials	S (N m ⁻¹) v			$\sigma_{s} (N m^{-1})$		ε _s		D(eV)	
	S _x	S_y	V _x	v_y	σ_{sx}	σ_{sy}	E _{sx}	ε _{sy}	-
C ₆₈ -GY	49.4	51.7	0.713	0.714	21.7	14.7	0.32	0.20	0.50
Graphene	350 ⁸	350 ⁸	0.186 ⁸	0.186 ⁸	36.7 ⁸	40.4 ⁸	0.194 ⁸	0.266 ⁸	1.44~1.46 ^{9,} 10
α-GY	21.9811	21.98 ¹¹	0.8711	0.8711	12.4 ¹²	11.0 ¹²	0.178 ¹²	0.156 ¹²	-
β-GY	73.0711	73.0711	0.6711	0.6711	15.7 ¹²	12.9 ¹²	0.162 ¹²	0.130 ¹²	-
γ-GY	162 ¹³	162 ¹³	0.429 ¹³	0.429 ¹³	15.414	34.4 ¹⁴	0.0814	0.1314	2.69 ¹⁴
GDY	123.1 ¹⁵	123.115	0.446 ¹⁵	0.446 ¹⁵	-	-	-	-	-
Graph-3-yne	101.8 ¹⁵	101.8 ¹⁵	0.436 ¹⁵	0.436 ¹⁵	-	-	-	-	-
Graph-4-yne	87.7 ¹⁵	87.7 ¹⁵	0.432 ¹⁵	0.432 ¹⁵	-	-	-	-	-

Table S1 The calculated in-plane stiffness *S*, Poisson ratio *v*, tensile strengths σ_s and strain to failure ε_s of C₆₈-GY, and the comparison with other typical carbon allotropes.

Biaxial strain (%)	m_e^* / m_0 (K-M)	$m_e^* / m_0(ext{K-}\Gamma)$	m_h^* / m_0 (K-M)	$m_h^* / m_0 (ext{K-}\Gamma)$
-6	0.641	0.298	-0.575	-0.296
-4	0.556	0.278	-0.685	-0.293
-2	0.712	0.271	-0.864	-0.294
-1	0.325	0.199	-0.342	-0.209
-0.5	0.325	0.199	-0.343	-0.210
0	0.326	0.200	-0.345	-0.211
0.5	0.326	0.200	-0.347	-0.212
1	0.327	0.201	-0.350	-0.214
2	0.329	0.203	-0.355	-0.218
4	0.336	0.210	-0.368	-0.228
6	0.347	0.221	-0.386	-0.243
8	0.364	0.238	-0.410	-0.265
10	0.391	0.266	-0.448	-0.300

Table S2 The calculated effective masses for electrons (m_e^*) and holes (m_h^*) in the direct band structures of C₆₈-GY at PBE level with applying various biaxial strain.

References

- 1. E. Yoo, J. Kim, E. Hosono, H.-s. Zhou, T. Kudo and I. Honma, Nano letters, 2008, 8, 2277-2282.
- D. Pan, S. Wang, B. Zhao, M. Wu, H. Zhang, Y. Wang and Z. Jiao, *Chemistry of Materials*, 2009, 21, 3136-3142.
- H. J. Hwang, J. Koo, M. Park, N. Park, Y. Kwon and H. Lee, *The Journal of Physical Chemistry* C, 2013, 117, 6919-6923.
- 4. K. Srinivasu and S. K. Ghosh, The Journal of Physical Chemistry C, 2012, 116, 5951-5956.
- 5. C. Sun and D. J. Searles, The Journal of Physical Chemistry C, 2012, 116, 26222-26226.
- H. Zhang, Y. Xia, H. Bu, X. Wang, M. Zhang, Y. Luo and M. Zhao, *Journal of Applied Physics*, 2013, **113**, 044309.
- S. Zhang, H. Du, J. He, C. Huang, H. Liu, G. Cui, Y. and Y. Li, ACS Applied Materials & Interfaces, 2016, 8, 8467-8473.
- 8. F. Liu, P. Ming and J. Li, *Physical Review B*, 2007, 76, 064120.
- 9. K. N. Kudin, G. E. Scuseria and B. I. Yakobson, Physical Review B, 2001, 64, 235406.
- 10. Y. Wei, B. Wang, J. Wu, R. Yang and M. L. Dunn, Nano Letters, 2013, 13, 26-30.
- 11. A. R. Puigdollers, G. Alonso and P. J. C. Gamallo, Carbon, 2016, 96, 879-887.
- 12. Y. Zhang, Q. Pei and C. Wang, Applied Physics Letters, 2012, 101, 081909.
- 13. Q. Peng, W. Ji and S. De, *Physical Chemistry Chemical Physics*, 2012, 14, 13385-13391.
- 14. S. W. Cranford and M. J. Buehler, Carbon, 2011, 49, 4111-4121.
- 15. Q. Yue, S. Chang, J. Kang, S. Qin and J. Li, *The Journal of Physical Chemistry C*, 2013, **117**, 14804-14811.