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Seebeck vs inertial effective mass  

Figure S1. Seebeck vs inertial effective mass of p-type compounds at 300 K for carrier concentration 

ranging from  1 x 1025 m-3 to 1 x 1028 m-3. Each carrier concentration is color coded differently. Solid lines 

represents lower and upper bound of 𝑁𝑉
∗𝐾∗of 1 and 10, respectively.  



 

Figure S2. Ratio of Seebeck coefficients at 𝑁𝑉
∗𝐾∗of 10 to 𝑁𝑉

∗𝐾∗of 1, showing higher enhancements at lower  

inertial effective mass across a wide range of carrier concentration.  High carrier concentration has higher 

enhancement at any given value of inertial effective mass over the low carrier concentration counterparts. 

of p-type compounds at 300 K for carrier concentration ranging from  1 x 1025 m-3 to 1 x 1028 m-3. Each 

carrier concentration is color coded differently, in the same order according to S1.  



 

Figure S3. Seebeck coefficients at optimum carrier concentration for all compounds, plotted against their 

inertial effective mass. The optimal Seebeck values of 130 μV/K is consistent with the case for constant 

relaxation time assumption (i.e. r = 0).1 



 

Figure S4. 𝑁𝑉
∗𝐾∗plotted against inertial effective mass. Qualitatively, at a particular carrier concentration, 

low effective mass compounds will possess higher reduced fermi potential (i.e. the Fermi level is deeper 

into the conduction/valence bands).  Hence, utilizing more orbitals (higher orbital degeneracy), resulting in 

higher 𝑁𝑉
∗𝐾∗. 

 

 

 

 

 

 

 

 

 

 

 

 



Calculation for effective Seebeck and electrical conductivity 

The effective Seebeck coefficient and average conductivity for polycrystalline 

compounds2: 

                                                             𝑆 =
𝑆𝑥𝑥𝜎𝑥𝑥+𝑆𝑦𝑦𝜎𝑦𝑦+𝑆𝑧𝑧𝜎𝑧𝑧

3𝜎𝑎𝑣𝑔
                                                        (1) 

                                                                𝜎𝑎𝑣𝑔 =
𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧

3
                                                             (2) 

Calculation for optimal power factor 

In order to minimize computational cost, the optimal power factor is calculated by 

assuming constant Seebeck effective mass (𝑚𝑆
∗) (i.e. taken at n = 1 x 1020 cm-3) since the optimal 

doping concentration for many thermoelectric compounds lie near to this doping concentration. 

Using the effective Seebeck coefficients obtained from Equation (1) for each compound, the 

reduced fermi potential (η) can be calculated using the Boltzmann transport equation expression 

for Seebeck coefficient in Equation (3)1 and by solving the Fermi-Dirac integrals code in 

MATLAB.  

                                                             𝑆 = ±
𝑘𝐵

𝑒
[𝜂 −

5
2 𝐹(3/2)(𝜂)

3
2 𝐹(1/2)(𝜂)

]                                                           (3) 

From Equation (3), for every value of Seebeck coefficient, a one-to-one correspondence can be 

found on η.  Subsequently, the n (carrier concentration) corresponding to each η can calculated 

from the following equation:3 

                                                        𝑛 =  
2

√𝜋
∫ 𝑁𝐶,3𝐷

∞

0
√𝜀𝑓𝐹𝐷(𝜀)𝑑𝜀                                                      (4) 



which essentially reduces to half-order Fermi integral that can be solved numerically:  

                                                                      𝑛 = 𝑁𝐶,3𝐷𝐹1
2

(𝜂)                                                                  (5) 

Here, 𝑁𝐶,3𝐷 represents the 3 dimensional effective density of states and can be expressed in terms 

of 𝑚𝑆
∗ as follows: 

                                                             𝑁𝐶,3𝐷 = 12 (2𝜋𝑚𝑆
∗𝑘𝐵𝑇/ℎ2)

3
2                                                        (6) 

Hence, by taking the value of 𝑚𝑆
∗ for each compound and calculating the corresponding η from 

Seebeck coefficient, n can be obtained. Finally, the optimum carrier concentration and maximum 

power factor S2σ can be determined by varying the value of n to get the corresponding S and σ that 

gives the highest power factor, as shown in Table T2.  

 

Calculation for 𝑵𝑽
∗ 𝑲∗/n slope 

 The slope for 𝑁𝑉
∗𝐾∗/n was calculated from the range of n = 1 x 1019 cm-3 to 1 x 1020 cm-3. 

Using the effective Seebeck coefficient, carrier concentration, as well as temperature, the Seebeck 

effective mass 𝑚𝑆
∗ was calculated using Boltzmann transport equations using MATLAB. The 

Fermi-Dirac integrals was solved using MATLAB code as described in 4.  𝑁𝑉
∗𝐾∗is subsequently 

estimated by the following equation: 

                                                                        𝑚𝑠
∗ = (𝑁𝑉

∗𝐾∗)2/3𝑚𝐶
∗                                                              (7) 

Where: 𝑚𝑐
∗ = 3 (

1

𝑚𝑥
∗ +

1

𝑚𝑦
∗ +

1

𝑚𝑧
∗)

−1

 

Subsequently, the slope of 𝑁𝑉
∗𝐾∗/n was calculated using linear approximation of the following: 



                                 
∂𝑁𝑉

∗𝐾∗

∂𝑛
=

𝑁𝑉
∗𝐾∗(1 𝑥 1020𝑐𝑚−3) − 𝑁𝑉

∗𝐾∗(1 𝑥 1019𝑐𝑚−3)

𝑛
                         (8) 

 

 

 

Averaging methods for 𝒎𝒃
∗  and 𝒎𝒄

∗ 

Different averaging methods were used for 𝑚𝑏
∗  and 𝑚𝑐

∗.5 The single valley effective mass, 

𝑚𝑏
∗  can be calculated from geometric average: 

 

𝑚𝑏
∗  = (𝑚𝑥

∗ 𝑚𝑦
∗ 𝑚𝑧

∗)
1/3

                                                                (9)  

 

The inertial effective mass, 𝑚𝑐
∗, which determines the carrier mobility can be calculated from the 

harmonic average along each direction:      

                                                           𝑚𝑐
∗ = 3 (

1

𝑚𝑥
∗

+
1

𝑚𝑦
∗

+
1

𝑚𝑧
∗
)

−1

                                                     (10) 

The effective anisotropy parameter 𝐾∗for non-ellipsoidally shaped Fermi surface can be defined 

as: 

                                                                          𝐾∗ = (
𝑚𝑏

∗

 𝑚𝑐
∗
)

3
2

                                                                    (11) 
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