**Electronic Supplementary Information** 

## Single iron atoms stabilized by microporous defects of biomass-derived carbon aerogels as high-performance cathode electrocatalysts for Al-air batteries

Ting He,<sup>a,b</sup> Yaqian Zhang,<sup>c</sup> Yang Chen,<sup>a</sup> Zhenzhu Zhang,<sup>a</sup> Haiyan Wang,<sup>a</sup> Yongfeng Hu,<sup>d</sup> Min Liu,<sup>e</sup> Chih-Wen Pao,<sup>f</sup> Jeng-Lung Chen,<sup>f</sup> Lo Yueh Chang,<sup>g,h</sup> Zhifang Sun,<sup>a,\*</sup> Juan Xiang,<sup>a</sup> Yi Zhang<sup>a,\*</sup> and Shaowei Chen<sup>b,\*</sup>

<sup>a</sup> Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China), allensune@gmail.com; yzhangcsu@csu.edu.cn

<sup>b</sup> Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064 (United States), shaowei@ucsc.edu

<sup>c</sup> Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada)

<sup>d</sup> Canadian Light Source, Saskatoon, Saskatchewan (Canada)

<sup>e</sup> Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha 410083 (China)

<sup>f</sup>X-ray Absorption Group, National Synchrotron Radiation Research Center, Hsinchu 30076 (Taiwan, Republic of China)

<sup>g</sup> Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China)

<sup>h</sup> Soochow University- Western University Centre for Synchrotron Radiation Research, Suzhou, Jiangsu 215123 (China)

| elements | CA <sub>LR</sub><br>at % | NCA <sub>LR</sub><br>at % | CA <sub>LR</sub> /Fe<br>at % | NCA <sub>LR</sub> /Fe<br>at % |
|----------|--------------------------|---------------------------|------------------------------|-------------------------------|
| С        | 97.85                    | 94.43                     | 95.49                        | 94.86                         |
| 0        | 2.09                     | 2.30                      | 2.18                         | 2.07                          |
| Ν        | 0.06                     | 3.27                      | 2.21                         | 2.74                          |
| Fe       | 0                        | 0                         | 0.12                         | 0.34                          |

Table S1 Elemental contents of the various catalysts determined by XPS.

Table S2 EDS data for the NCA\_LR/Fe catalyst

| elements | wt %  | at %  |
|----------|-------|-------|
| С        | 90.10 | 92.30 |
| Ν        | 5.40  | 04.80 |
| 0        | 3.50  | 02.70 |
| Fe       | 0.90  | 0.20  |

Table S3 Iron contents of the various catalysts determined by ICP-OES

| Sample                | Concentration<br>(mg/L) | Mass of Fe (mg) | Total mass (mg) | wt%   |
|-----------------------|-------------------------|-----------------|-----------------|-------|
| NCA <sub>LR</sub>     | 0.00                    | 0               | 2.8             | 0.000 |
| CA <sub>LR</sub> /Fe  | 0.018                   | 0.0018          | 3.2             | 0.056 |
| NCA <sub>LR</sub> /Fe | 0.32                    | 0.032           | 2.4             | 1.33  |

Table S4 BET surface area and pore distribution of the CALR, NCALR, CALR/Fe and NCALR/Fe catalysts.

| Sampla                                | SBET  | Pore volumes | Pore volume percentage (%) |           |     |
|---------------------------------------|-------|--------------|----------------------------|-----------|-----|
| Sample $(m^2 g^{-1})$ $(cm^3 g^{-1})$ |       | micropore    | mesopore                   | macropore |     |
| CA <sub>LR</sub>                      | 857.3 | 1.306        | 19.8                       | 77.1      | 3.1 |
| NCA <sub>LR</sub>                     | 719.3 | 0.75         | 36.1                       | 60.5      | 3.3 |
| CA <sub>LR</sub> /Fe                  | 777.2 | 1.12         | 23.4                       | 71.1      | 5.5 |
| NCA <sub>LR</sub> /Fe                 | 699.8 | 0.91         | 24.2                       | 71.0      | 4.8 |

Table S5 EXAFS fitting results of NCA<sub>LR</sub>/Fe by using FePc as a reference.

| Sample                | Ν | R       | σ²      |  |
|-----------------------|---|---------|---------|--|
| NCA <sub>LR</sub> /Fe | 4 | 1.96960 | 0.00724 |  |
| FePc                  | 4 | 1.97578 | 0.01088 |  |

| Materials                               | Half-wave<br>potential (V) | Ref.      |
|-----------------------------------------|----------------------------|-----------|
| NiCo alloy/carbon nanofibers            | 0.80                       | [1]       |
| Co nanoparticles/3D Carbon              | 0.83                       | [2]       |
| Carbon nanosphere/single-atom catalysts | 0.84                       | [3]       |
| Bimetal/nitrogen co-doped carbon        | 0.85                       | [4]       |
| Copper single atom catalyst             | 0.87                       | [5]       |
| Single cobalt atoms catalyst            | 0.88                       | [6]       |
| Single-atom Fe-N <sub>4</sub> catalyst  | 0.88                       | [7]       |
| Biomass hydrogel derived single Fe atom | 0.88                       | This work |
| Single Fe atoms/N-doped carbon          | 0.90                       | [8]       |

Table S6 Comparison of the ORR performance of the NCA<sub>ST</sub>/Fe catalyst with results of relevant TM–N/C catalysts in recent literatures

| Potential | NCA <sub>LR</sub> /Fe | CA <sub>LR</sub> /Fe | NCA <sub>LR</sub> | CA <sub>LR</sub> |
|-----------|-----------------------|----------------------|-------------------|------------------|
| 0.8       | 3.85                  | 2.83                 | 3.27              | 2.84             |
| 0.7       | 3.83                  | 2.56                 | 3.62              | 2.91             |
| 0.6       | 3.85                  | 2.31                 | 3.26              | 2.41             |
| 0.5       | 3.87                  | 2.47                 | 3.31              | 2.51             |
| 0.4       | 3.92                  | 2.82                 | 3.45              | 2.75             |
| 0.3       | 3.96                  | 3.26                 | 3.57              | 3.08             |
| 0.2       | 4.00                  | 3.55                 | 3.73              | 3.39             |
| Average n | 3.90                  | 2.83                 | 3.46              | 2.84             |

 Table S7 Electron transfer numbers (n) for different catalysts.

Table S8 Electron transfer numbers (n) for the NCALR/Fe catalyst in the acidic medium.

| Potential (\ | /)0.7 | 0.6 | 0.5  | 0.4  | 0.3  | 0.2  | Average N |  |
|--------------|-------|-----|------|------|------|------|-----------|--|
| n            | 3.88  | 3.6 | 3.75 | 3.84 | 3.87 | 3.97 | 3.82      |  |

Table S9 Al-air battery performance of this work and other literatures.

| Catalysts                                  | Maximal power<br>density/ mW cm <sup>-2</sup> | Open circuit<br>voltage/ V | Voltage at 20 mA<br>cm <sup>-2</sup> /V |
|--------------------------------------------|-----------------------------------------------|----------------------------|-----------------------------------------|
| This work                                  | 181.1                                         | 1.81                       | 1.70                                    |
| Commercial Pt/C                            | 175.0                                         | 1.79                       | 1.64                                    |
| Co-doped carbon <sup>[9]</sup>             | 161.1                                         | 1.70                       |                                         |
| Fe/N co-doped carbon <sup>[10]</sup>       |                                               |                            | 1.68                                    |
| Cu/Fe-N-C <sup>[11]</sup>                  |                                               |                            | 1.64                                    |
| Fe <sub>3</sub> C@Fe/N-G-1 <sup>[12]</sup> | 129.9                                         |                            | 1.56                                    |
| Fe-Co/N-doped C <sup>[13]</sup>            |                                               |                            | 1.46                                    |
| Defect-engineered                          | 159                                           | 1.90                       |                                         |
| MnO <sub>2<sup>[14]</sup></sub>            |                                               |                            |                                         |



**Fig. S1** Digital photographs of LR sol and hydrogels: (a) LR sol, (b) LR-Si hydrogel, and (c) LR-Si/Me-Fe hydrogels. (d) Biomass hydrogels that are used to synthesize carbon aerogels embedded with single Fe atom catalysts.



Fig. S2 SEM image of LR hydrogel.



Fig. S3 FTIR spectra of LR-Si, LR-Si/Me, LR-Si/Fe, LR-Si/Me-Fe and LR hydrogels.



**Fig. S4** UV-vis spectra of the Me-Fe complex at different melamine:Fe ratios. At increasing Fe loading, the major absorption peak of the melamine-Fe sol (215 nm) becomes intensified and red-shifts significantly. In addition, two new peaks appear at 305 nm and 380 nm and grow gradually.



Fig. S5 SEM images of NCALR/Fe.



Fig. S6 STEM images of NCALR/Fe (HAABF), NCAPT/Fe (HAADF) and NCASP/Fe (HAADF).



Fig. S7 XPS survey spectra of the  $CA_{LR}$ ,  $NCA_{LR}$ ,  $CA_{LR}$ /Fe and  $NCA_{LR}$ /Fe catalysts.



Fig. S8 EDS analysis of the NCALR/Fe catalyst.



**Fig. S9** (a and b)  $N_2$  adsorption-desorption isotherms and (c and d) pore size distribution of the CA<sub>LR</sub>, NCA<sub>LR</sub>, CA<sub>LR</sub>/Fe and NCA<sub>LR</sub>/Fe catalysts.



Fig. S10 Raman spectra of the catalysts: CALR, NCALR, CALR/Fe and NCALR/Fe.



Fig. S11 High-resolution XPS scan of the Fe 2P electrons of NCA<sub>LR</sub>/Fe.



Fig. S12 XRD patterns of the CA<sub>LR</sub>, NCA<sub>LR</sub>, CA<sub>LR</sub>/Fe and NCA<sub>LR</sub>/Fe catalysts.



**Fig. S13** LSV curves for (a) CA<sub>LR</sub>, (b) NCA<sub>LR</sub>, (c) CA<sub>LR</sub>/Fe and (d) NCA<sub>LR</sub>/Fe at different rotation rates in 0.1 M KOH, inset to panel (d) is the Koutecky-Levich plot at +0.85 V.



Fig. S14 Electron transfer numbers of various catalysts at different potentials.



**Fig. S15** LSVs of NCA<sub>LR</sub>, NCA<sub>LR</sub>/Fe (without or with 10 mM SCN<sup>-</sup>) and Pt/C as ORR catalysts at 1600 rpm; scan rate:  $5 \text{ mV s}^{-1}$ , medium: O<sub>2</sub>-saturated 0.1 M HClO<sub>4</sub>.



**Fig. S16** (a) LSVs of the CA<sub>LR</sub> and CA<sub>LR</sub>/Fe in O<sub>2</sub>-saturated 0.1 M HClO<sub>4</sub>. (b) LSVs of the NCA<sub>LR</sub>/Fe at different rotation rates. Inset to panel (b) is the Koutecky-Levich plot at 0.50 V. Scan rate 5 mV s<sup>-1</sup>.

The ORR activity in acidic medium (0.1 M HClO<sub>4</sub>) was also investigated. As shown in Fig. S9 and S10, the NCA<sub>LR</sub>/Fe sample exhibits a half-wave potential of +0.72 V, which is very close to that of Pt/C (+0.77 V). Table S3 lists the average n value (3.82) of the NCA<sub>LR</sub>/Fe within the potential range of +0.2 V to +0.7 V, again, suggesting a 4e<sup>-</sup> reaction pathway from O<sub>2</sub> to H<sub>2</sub>O. To explore the function of single metal atom sites in the NCA<sub>LR</sub>/Fe catalyst, SCN<sup>-</sup> was added during the tests as they could strongly coordinate with the metal sites. As shown in Fig. S9 and S11, upon the addition of SCN<sup>-</sup> into the acidic medium, the E<sub>1/2</sub> of the NCA<sub>LR</sub>/Fe catalyst shifts negatively by ca. 90 mV, suggesting that the ORR activity is dominated by the Fe atom sites.



Fig. S17 CV of NCA<sub>LR</sub>/Fe and Pt/C as ORR catalysts in 6 M KOH.



Fig. S18 Open circuit voltage tests of NCALR/Fe and Pt/C.

## **Supplementary References**

- [1] Y. Fu, H.-Y. Yu, C. Jiang, T.-H. Zhang, R. Zhan, X. Li, J.-F. Li, J.-H. Tian, R. Yang, *Adv. Funct. Mater.* **2018**, *28*, 1705094.
- [2] H. Jiang, Y. Liu, W. Z. Li, J. Li, Small 2018, 14.
- [3] A. Han, W. Chen, S. Zhang, M. Zhang, Y. Han, J. Zhang, S. Ji, L. Zheng, Y. Wang, L. Gu, C. Chen, Q. Peng, D. Wang, Y. Li, *Adv. Mater.* **2018**, *30*, e1706508.
- [4] M. L. Tan, T. He, J. Liu, H. Q. Wu, Q. Li, J. Zheng, Y. Wang, Z. F. Sun, S. Y. Wang, Y. Zhang, *Journal of Materials Chemistry A* **2018**, *6*, 8227.
- [5] F. Li, G.-F. Han, H.-J. Noh, S.-J. Kim, Y. Lu, H. Y. Jeong, Z. Fu, J.-B. Baek, *Energy Environ. Sci.* **2018**.
- [6] P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin, W. Liu, H. Ju, J. Zhu, X. Hong, Z. Deng, G. Zhou, S. Wei, Y. Li, *Angew. Chem. Int. Ed.* **2016**, *55*, 10800.
- [7] Y. Pan, S. Liu, K. Sun, X. Chen, B. Wang, K. Wu, X. Cao, W. C. Cheong, R. Shen, A. Han, Z. Chen, L. Zheng, J. Luo, Y. Lin, Y. Liu, D. Wang, Q. Peng, Q. Zhang, C. Chen, Y. Li, *Angew. Chem. Int. Ed.* 2018, 57, 8614.
- [8] Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen, Z. Li, R. Shen, L. Zheng, Z. Zhuang, D. Wang, Y. Li, *Angew. Chem. Int. Ed.* **2017**, *56*, 6937.
- [9] J. Li, Z. Zhou, K. Liu, F. Li, Z. Peng, Y. Tang, H. Wang, *J. Power Sources* **2017**, 343, 30.
- [10] J. Li, J. Chen, H. Wang, Y. Ren, K. Liu, Y. Tang, M. Shao, *Energy Storage Materials* **2017**, *8*, 49.
- [11] J. Li, J. Chen, H. Wan, J. Xiao, Y. Tang, M. Liu, H. Wang, *Applied Catalysis B: Environmental* **2019**, *242*, 209.
- [12] K. Liu, Z. G. Peng, H. Y. Wang, Y. R. Ren, D. P. Liu, J. S. Li, Y. G. Tang, N. Zhang, Journal of the Electrochemical Society 2017, 164, F475.
- [13] M. Tan, T. He, J. Liu, H. Wu, Q. Li, J. Zheng, Y. Wang, Z. Sun, S. Wang, Y. Zhang, *Journal of Materials Chemistry A* **2018**, *6*, 8227.
- [14] M. Jiang, C. Fu, J. Yang, Q. Liu, J. Zhang, B. Sun, *Energy Storage Materials* **2019**, *18*, 34.