Supporting Information

Solvation Effect in Precursor Solution Enables over 16% Efficiency in Thick 2D Perovskite Solar Cells

Xiaomei Lian,^{a,b} Jiehuan Chen,^{a,b} Yingzhu Zhang,^{a,b} Minchao Qin,^c Thomas Rieks Andersen,^{a,b} Jun Ling,^a Gang Wu,^{*a,b} Xinhui Lu,^c Deren Yang,^b and Hongzheng Chen^{*a,b}

^aMOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China. E-mails: samy@zju.edu.cn, hzchen@zju.edu.cn ^bState Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, P. R. China ^cDepartment of Physics, The Chinese University of Hong Kong, New Territories 999077, Hong Kong, P. R. China **Keywords: Thick 2D perovskite film; Solvation effect; Guanidinium; Large grains; Orientation**

Figure S1. The forward-reverse J-V curves of the GA-BA₂MA₄Pb₅I₁₆ based PVSCs with precursor concentration of 0.6 M.

Figure S2. (a) Absorption spectra, (b) X-ray diffraction (XRD) patterns and (c) XRD peak intensity and FWHM of the (202) peak for the $GA-BA_2MA_4Pb_5I_{16}$ films with different thicknesses.

Figure S3. 2D GIWAXS patterns of the GA-BA₂MA₄Pb₅I₁₆ films with different thicknesses.

Figure S4. (a) Steady-state PL spectra, (b) Measured *Voc* of the PVSCs based on $GA-BA_2MA_4Pb_5I_{16}$ films with different thicknesses on quartz substrate.

Figure S5. Normalized steady-state PL spectra of the perovskite films with (a) GA⁺ and (b) PEA⁺ addition excited from back (glass side) and front (perovskite side) sides.

Figure S6. (a) Absorption spectra, (c) X-ray diffraction (XRD) patterns and (d) XRD peak intensity and FWHM of the (202) peak for the PEA-BA₂MA₄Pb₅I₁₆ films with different thicknesses.

Figure S7. (a-c) Cross-sectional SEM images (the scale bar is 1 μ m), (d) XRD patterns and (e) *J-V* curves of the PEA-BA₂MA₄Pb₅I₁₆ films or PVSCs deposited from precursor solutions with different ratio of PEAI addition at concentration of 0.4M.

Figure S8. The forward-reverse *J-V* curves of the PVSCs based on $GA-BA_2MA_4Pb_5I_{16}$ film deposited from precursor solution (0.6 M) with MACl addition.

Figure S9. (a) Steady-state photoluminescence (PL) spectra of $GA-BA_2MA_4Pb_5I_{16}$ perovskite films (0.6M) with and without MACI on quartz substrates. (b) SIMS profiles showing Cl⁻, InO⁻ elements from the top to the bottom of the optimized GA- $BA_2MA_4Pb_5I_{16}$ perovskite film (0.6M) with MACI on quartz substrate.

Figure S10. Storage stability of the unsealed devices based on $GA-BA_2MA_4Pb_5I_{16}$ (0.6 M, with MACI) and 3D MAPbI₃ films in air with different humidities.

Table S1. A summary of the film thickness for the reported high 2D PVSCs with inverted structure.

Perovskite	Thickness [nm]	<i>Voc</i> [V]	<i>Jsc</i> [mA cm ⁻²]	FF	PCE [%]	Reference
(PEA) ₂ (MA) ₄ Pb ₅ I ₁₆	300	1.11	15.01	0.67	11.01	Adv. Energy Mater. 2018, 8, 1702498
(PEA) ₂ (MA) ₃ Pb ₄ I ₁₃	310	1.16	14.7	0.71	12.1	Adv. Energy Mater. 2018, 1800185
(PEA) ₂ (MA) ₄ Pb ₅ I ₁₆	300	1.19	15.8	0.75	14.1	ACS Energy Lett. 2018, 3, 2086
(BA) ₂ (MA) ₂ Pb ₃ I ₁₀	300	1.23	13.61	0.72	12.07	J. Mater. Chem. A, 2018, 6, 18010
(BA) ₂ (MA) ₃ Pb ₄ I ₁₃	235	1.01	16.76	0.74	12.51	Nature 2016, 536, 312
(BA) ₂ (MA _{0.8} FA _{0.2}) ₃ Pb ₄ I ₁₃	300	1.00	18.12	0.71	12.81	J. Am. Chem. Soc. 2018, 140, 459
(PDA) ₂ (MA) ₃ Pb ₄ I ₁₃	315	0.97	18.0	0.74	13.0	Adv. Mater. 2018, 30, 1800710
GAMA ₄ Pb ₄ I ₁₃	300	1.00	17.5	0.73	12.8	J. Mater. Chem. A, 2018, 6, 18871
(ThMA) ₂ (MA) ₂ Pb ₃ I ₁₀	370	1.07	18.89	0.76	15.42	J. Am. Chem. Soc. 2018, 140, 11639

Table S2. The forward-reverse *J-V* photovoltaic parameters of the $GA-BA_2MA_4Pb_5I_{16}$ based PVSCs with precursor concentration of 0.6M.

	Voc [V]	<i>Jsc</i> [mA cm ⁻²]	FF	PCE [%]	HI [%]	<i>Jcal</i> [mA cm ⁻²]
Reverse	1.08	18.16	0.76	14.94	1.0	17.86
Forward	1.08	17.63	0.75	14.25	4.0	

Table S3. XRD pattern parameters of the GA-BA₂MA₄Pb₅I₁₆ films with different thicknesses.

Thickness	Plane	(111)	(202)	
200	FWHM [°]	0.178	0.230	
290 mm	Intensity [cps]	9.5×10 ⁴	1.0×10 ⁵	
E20 nm	FWHM [°]	0.176	0.222	
550 1111	Intensity [cps]	1.2×10 ⁵	1.5×10 ⁵	
750	FWHM [°]	0.203	0.248	
750 nm	Intensity [cps]	6.2×10 ⁴	7.4×10 ⁴	

Table S4. XRD pattern parameters of the PEA-BA2MA4Pb5I16 films with different thicknesses.

Thickness	Plane	(111)	(202)
200	FWHM [°]	0.191	0.235
290 nm	Intensity [cps]	6.1×10 ⁴	6.7×10 ⁴
F10 nm	FWHM [°]	0.183	0.225
210 1111	Intensity [cps]	6.7×10 ⁴	7.4×10 ⁴
010	FWHM [°]	0.210	0.248
810 NM	Intensity [cps] 4.6×10	4.6×10 ⁴	4.8×10 ⁴

Table S5. The J-V photovoltaic parameters of the PVSCs based on PEA-BA2MA4Pb5I16 films fabricated with different ratios ofPEAI addition at concentration of 0.4M.

PEAI ratio	<i>Voc</i> [V]	Jsc [mA cm ⁻²]	FF	PCE _{max/avg} [%]
0.1 PEAI	1.09	16.39	0.78	13.83/13.30
0.3 PEAI	1.09	15.69	0.71	12.21/11.54
0.5 PEAI	0.95	13.73	0.42	5.43/4.65