Electronic Supplementary Information

Immobilization of highly active bimetallic PdAu nanoparticles to nanocarbons for dehydrogenation of formic acid

Wei Hong,^a Mitsunori Kitta,^a Nobuko Tsumori,^b Yuichiro Himeda,^c Tom Autrey,^d Qiang Xu^{*, a, e}

^a Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan

^b Toyama National College of Technology, 13, Hongo-machi, Toyama 939-8630, Japan

^c Research Institute of Energy Frontier, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5-1, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

^d Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States

^e AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), Yoshida, Sakyo-ku, Kyoto 606-8501, Japan

1. Experimental Section

1.1 Chemicals

All chemicals have been used as received without any purifications. Vulcan XC-72R carbon (Cabot Corp., USA), maxsorb MSC-30 and MSP-20X carbons (Nanoporous Carbon, Kansai Coke and Chemicals Co. Ltd.), formic acid (FA, Sigma-Aldrich, >98%), sodium borohydride (Sigma-Aldrich), L-Arginine (LA) (Sigma-Aldrich), trisodium citrate (TSC) (Sigma-Aldrich), commercial Pd/C (5 wt% Pd, Sigma-Aldrich), sodium hydroxide (Wako Pure Chemical Industries, Ltd), Polyvinylpyrrolidone (PVP·K30) (Wako Pure Chemical Industries, Ltd), K₂PdCl₄ (Wako Pure Chemical Industries, Ltd), HAuCl₄ (Wako Pure Chemical Industries, Ltd), sodium formate dehydrate (SF) (Tokyo Chemical Industry Co. Ltd.), L-lysine (LL) (Tokyo Chemical Industry Co. Ltd.), Piperazine anhydrous (PA) (Tokyo Chemical Industry Co. Ltd.) and ethylenediamine (EG) (Tokyo Chemical Industry Co. Ltd.) were used as received. Deionized water with a resistance of 18.2 M Ω ·cm which was obtained by reverse osmosis followed by ion exchange and filtration (RFD 250NB, Toyo Seisakusho Kaisha, Ltd., Japan) has been used throughout the whole experiments.

1.2 Catalyst synthesis

Synthesis of Pd₁**Au**₁/**30-LA:** An aqueous mixture containing 3 mL of LA (0.1 g mL⁻¹), 0.3 mL of K₂PdCl₄ (0.1 mol L⁻¹) and 0.3 mL of HAuCl₄ (0.1 mol L⁻¹) was diluted to a volume of 10 mL with water, then added into 0.1 g of MSC-30 carbon and sonicated for 30 min. Subsequently, 1 mL of freshly prepared NaBH₄ solution (2.64 mol L⁻¹) was injected into the above mixture and was allowed to stir for another 30 min. Finally, the product was collected with centrifugation, washed with water for three times and collected for further use. For the structure and composition characterizations, the final samples were dried at room temperature in a vacuum oven after collected.

Synthesis of PdAu/30-LA with different Pd/Au ratios: The synthetic process was the same as the synthesis of Pd₁Au₁/30-LA, except for the use of following metal precursors: 0.2 mL of K₂PdCl₄ (0.1 mol L⁻¹) and 0.4 mL of HAuCl₄ (0.1 mol L⁻¹) for Pd₁Au₂/30-LA; 0.4 mL of K₂PdCl₄ (0.1 mol L⁻¹) and 0.2 mL of HAuCl₄ (0.1 mol L⁻¹) for Pd₂Au₁/30-LA; 0.6 mL of K₂PdCl₄ (0.1 mol L⁻¹) for Pd/30-LA; 0.6 mL of HAuCl₄ (0.1 mol L⁻¹) for Au/30-LA.

Synthesis of Pd₁Au₁/30-X (X= LL, PA, EG): The synthetic process was the same as the synthesis of Pd₁Au₁/30-LA, except for the use of other small molecules X (X= LL, PA, EG) in place of LA.

Synthesis of $Pd_1Au_1/30$ -NaOH: The synthetic process was the same as the synthesis of $Pd_1Au_1/30$ -LA, except for the use of NaOH instead of LA.

Synthesis of Pd₁Au₁/30-TSC: The synthetic process was the same as the synthesis of

 $Pd_1Au_1/30$ -LA, except for the use of 1 mL of aqueous TSC (0.2 mol L⁻¹) instead of LA.

Synthesis of $Pd_1Au_1/30$ -SF: The synthetic process was the same as the synthesis of MSC-30-Pd_1Au_1-LA, except for the use of 0.3 g of SF in place of LA.

Synthesis of $Pd_1Au_1/30$ -PVP: The synthetic process was the same as the synthesis of MSC-30-Pd_1Au_1-LA, except for the use of 0.3 g of PVP (K 30) in place of LA.

Synthesis of $Pd_1Au_1/30$ -none: The synthetic process was the same as the synthesis of $Pd_1Au_1/30$ -LA without adding LA.

Synthesis of $Pd_1Au_1/20$ -LA: The synthetic process was the same as the synthesis of $Pd_1Au_1/30$ -LA, except for the use of MSP-20X carbon in place of MSC-30 carbon. Synthesis of $Pd_1Au_1/72$ -X (X=LA, LL, PA, NaOH): The synthetic process was the same as the synthesis of $Pd_1Au_1/30$ -LA and $Pd_1Au_1/30$ -X, except for the use of Vulcan XC-72R carbon instead of MSC-30 carbon.

Synthesis of $Pd_1Au_1/72$ -none: The synthetic process was the same as the synthesis of $Pd_1Au_1/72$ -LA except without adding LA.

Synthesis of Pd₁Au₁/72-LA with different Pd/Au ratios: The synthetic process was the same as the synthesis of Pd₁Au₁/72-LA, except for the use of the metal precursors as: 0.2 mL of K₂PdCl₄ (0.1 mol L⁻¹) and 0.4 mL of HAuCl₄ (0.1 mol L⁻¹) for Pd₁Au₂/72-LA; 0.4 mL of K₂PdCl₄ (0.1 mol L⁻¹) and 0.2 mL of HAuCl₄ (0.1 mol L⁻¹) for Pd₂Au₁/72-LA; 0.6 mL of K₂PdCl₄ (0.1 mol L⁻¹) for Pd/72-LA; 0.6 mL of HAuCl₄ (0.1 mol L⁻¹) for Au/72-LA; 0.4

1.3 Instruments

X-ray diffraction patterns were recorded on a Rigaku Ultima IV diffractometer with Cu- K_{α} radiation (scan rate: 10 / min). The N₂ adsorption/desorption isotherms were collected at liquid nitrogen temperature (77 K) using automatic volumetric adsorption equipment (Belsorp-max) after degassing at 60 °C. X-ray photoelectron spectrum (XPS) data were gained on a Shimadzu ESCA-3400 X-ray photoelectron spectrometer with an Mg K a source (10 kV, 10 mA). A Titan³ G2 60-300 transmission electron microscope (FEI Company) equipped with energy-dispersive X-ray detector (super-x with Esprit, Bruker Company) was used to further characterize the structure and composition. The operating voltage for TEM and high-angle annular dark-field scanning TEM (HAADF-STEM) measurements was 300 kV. The Pd and Au metal contents of the resulted products were determined with an inductively coupled plasma (ICP) analysis system (Thermo Scientific iCAP6300). Elemental analysis was carried on CE EA1110 and Perkinelmer 2400II instruments. The gases were detected on SHIMADZU GC-8A, TCD.

1.4 Dehydrogenation of formic acid (DOFA) measurements

The apparatus for the measurements of H_2/CO_2 generated from aqueous FA is the same as our previous reports.

From aqueous FA: In brief, the as-prepared catalyst suspended in 1 mL of water (for VXC-72 carbon supported catalyst 2 mL water was used) was transferred into a flask with capacity of 30 mL which was kept at a preset temperature with a water bath. To start the FA dehydrogenation reaction, 0.5 mL of FA (6 mol L⁻¹) aqueous solution was injected with a pipette. Under ambient temperature, the volume of released gas was recorded by the displacement volume of water from a gas burette filled with water. The molar ratio of n_{Pd+Au} / n_{FA} was fixed at 0.02 during the whole measurements unless otherwise stated. For the durability test, 0.5 mL of FA (6 mol L⁻¹) was consecutively added into the mixture without separation.

From a mixture of aqueous FA/SF: 1 mL of FA/SF mixture (FA : 3 mol L^{-1}) with different FA/SF ratios was injected into the catalyst suspension. For each run of the durability test, the catalyst was separated from the mixture by centrifugation and washed with water several times, followed by drying in vacuum at room temperature.

TOF Calculation methods:

$$_{\rm TOF} = \frac{P_{atm} \ V/RT}{2 \ n^{metal} t}$$

TOF is turnover frequency, P_{atm} is the atmospheric pressure, V is the volume of gas generated during the reaction, R is the gas constant, T is the dehydrogenation reaction temperature (298-333 K), n_{metal} represents the molar amount of the noble metals: Pd, Au or Pd + Au, and t represents the time of completion of gas generation. Note: for the experiment using the sodium formate as the additive, the time represents the generated gas volume reached at 146 mL.

Fig. S1 UV-Vis spectra of different aqueous solutions.

Fig. S2 (A) TEM and (B, C) HAADF-STEM images of the as-prepared $Pd_1Au_1/30$ -None catalyst.

Fig. S3 (A, B) TEM and (C) HAADF-STEM images of the as-prepared Pd₁Au₁/30-NaOH catalyst. (D) The size distribution of metallic PdAu NPs.

Fig. S4 (A) EDS, (B, D) HADDF-STEM and (C, E, F, G) EDS elemental mapping images of the as-prepared $Pd_1Au_1/30$ -LA catalyst. The signal of Cu in (A) was originated from the carbon coated copper grid.

Fig. S5 XRD patterns of (1) commercial MSC-30 carbon, (2) $Pd_1Au_1/30$ -LA, (3) $Pd_1Au_1/30$ -LL, (4) $Pd_1Au_1/30$ -EG, (5) $Pd_1Au_1/30$ -PA, (6) $Pd_1Au_1/30$ -PVP, (7) $Pd_1Au_1/30$ -SF and (8) $Pd_1Au_1/30$ -TSC.

Fig. S6 XRD patterns of the PdAu/30-LA catalysts with different Pd/Au ratios.

Fig. S7 N_2 adsorption and desorption isotherms at 77 K for PdAu catalysts loaded on MSC-30 carbon with different Pd/Au ratios.

Fig. S8 XPS spectra of the as-prepared Pd₁Au₁/30-LA catalyst: (A) Au 4f, (B) Pd 3d, (C) N1s.

Fig. S9 (A) TEM and the size distribution of PdAu NPs (inset), (B) HADDF-STEM and (C-E) EDS elemental mapping images of the as-prepared Pd₁Au₁/72-LA catalyst.

Fig. S10 XRD patterns of the different products. (1) Vulcan XC-72R carbon, (2) $Pd_1Au_1/72$ -LA, (3) $Pd_1Au_2/72$ -LA, (4) $Pd_2Au_1/72$ -LA, (5) Au/72-LA, (6) Pd/72-LA and (7) $Pd_1Au_1/72$ -None.

Fig. S11 N₂ adsorption and desorption isotherms at 77 K of, (A) commercial Vulcan XC-72R carbon, $Pd_1Au_1/72$ -LA and $Pd_1Au_1/72$ -None, (B) Au/72-LA, (C) Pd/72-LA, (D) $Pd_2Au_1/72$ -LA, (E) $Pd_1Au_2/72$ -LA and (F) the $Pd_1Au_1/72$ -LA after catalysis.

Fig. S12 XPS spectra of the as-prepared Pd₁Au₁/72-LA catalyst: (A) Au 4f, (B) Pd 3d, (C) N1s.

Flomont	A u	Dd	An • Dd	
Sample	Au (mass ratio %)	(mass ratio %)	Au . r u (molar ratio)	
Pd ₁ Au ₁ /30-LA	3.4	1.8	1.72 : 1.69	
Pd ₂ Au ₁ /30-LA	1.7	1.9	0.863 : 1.78	
Pd ₁ Au ₂ /30-LA	4.0	1.1	2.03 : 1.03	
Pd ₁ Au ₁ /72-LA	4.7	2.7	2.39 : 2.54	
Pd ₂ Au ₁ /72-LA	2.9	3.5	1.47 : 3.29	
Pd ₁ Au ₂ /72-LA	6.4	1.8	3.25 : 1.69	
Pd ₁ Au ₁ /20-LA	2.3	0.9	1.17 : 0.846	

 Table S1 ICP results of the as-prepared samples.

 Table S2 Elemental analysis results of the as-prepared samples.

Element	С	Н	Ν
Sample	(mass ratio %)	(mass ratio %)	(mass ratio %)
Pd ₁ Au ₁ /30-LA	68.6	2.83	8.76
Pd ₁ Au ₁ /72-LA	86.41	0.35	—
Pd ₁ Au ₁ /20-LA	71.93	2.65	7.53
Pd ₁ Au ₁ /30-LA-after catalysis	74.06	2.12	5.99

Note: For $Pd_1Au_1/72$ -LA catalyst, there was no detectable N element.

Sample	BET surface area / m ² g ⁻¹	Pore volume cm ⁻³ g ⁻¹
MSC-30	3509.8	1.8448
$Pd_1Au_1/30-LA$	1372.3	0.7111
$Pd_2Au_1/30-LA$	1246.5	0.6544
Pd ₁ Au ₂ /30-LA	1281.5	0.668
Pd/30-LA	1456.2	0.7646
Au/30-LA	1264.0	0.6689
Pd ₁ Au ₁ /30-LA-after catalysis	2061.4	1.0775
Pd ₁ Au ₁ /30-None	2659.4	1.4081
Pd ₁ Au ₁ /30-None+LA	2100.0	1.0893
Pd ₁ Au ₁ /30-NaOH	2578.3	1.3407
Pd ₁ Au ₁ /30-LL	1998.1	1.0347
Pd ₁ Au ₁ /30-PA	2870.6	1.5385
Pd ₁ Au ₁ /30-EG	2792.7	1.4534
Pd ₁ Au ₁ /30-TSC	3459.6	1.8244
Commercial Pd/C	971.3	0.7850
Commercial Pd/C+LA	685.2	0.6115
MSP-20X	2142.6	1.0287
Pd ₁ Au ₁ /20-LA	726.8	0.3665
Vulcan XC-72R carbon	232.4	0.3129
Pd ₁ Au ₁ /72-LA	130.4	0.2928
$Pd_2Au_1/72-LA$	144.1	0.2843
Pd ₁ Au ₂ /72-LA	138.9	0.2896
Pd/72-LA	112.7	0.2350
Au/72-LA	122.2	0.2429
Pd ₁ Au ₁ /72-None	203.2	0.3136
Pd ₁ Au ₁ /72-LA-after catalysis	177.3	0.3847

 Table S3 BET surface areas and pore volumes of different samples.

Note: The commercial Pd/C+LA catalyst was prepared as follows: 0.128 g of the commercial Pd/C catalyst was mixed with 3 mL of LA (0.1 g m L^{-1}), then diluted to 45 mL with water. The mixture was shaken for one hour, then collected by centrifugation and washed for several times. Finally, the sample was dried at room temperature in vacuum.

Fig. S13 Gas chromatograms of gas generated from FA dehydrogenation over the asprepared Pd₁Au₁/30-LA catalyst at 50 °C, (A) with CO, air, H₂ and (B) CO₂ as the reference gases, respectively. The results demonstrate the presence of H₂ and CO₂ in the released gas, and no CO was observed at the detection limit. The analysis was performed using, (A) packed column Molecular Sieve 5A and carrier gas Ar and (B) packed column Porapak N and carrier gas He.

Fig. S14 The volume of the generated gas $(H_2 + CO_2)$ from formic acid dehydrogenation versus time over the as-prepared PdAu/30-LA catalysts with different Au/Pd ratios at 50 °C ($n_{FA} = 3 \text{ mmol}$, n_{metal} : $n_{FA} = 0.02$).

Fig. S15 The volume of the generated gas $(H_2 + CO_2)$ from formic acid dehydrogenation versus time over the as-prepared Pd₁Au₁/30-X (X represents different mediate reagents) catalysts synthesized with different mediated molecules at 50 °C ($n_{FA} = 3 \text{ mmol}$, n_{metal} : $n_{FA} = 0.02$).

Fig. S16 The volume of the generated gas $(H_2 + CO_2)$ from formic acid dehydrogenation versus time over the Pd₁Au₁/30-None catalyst in different solutions at 50 °C (FA: 6 mol L⁻¹, n_{metal} : $n_{FA} = 0.02$). For curve (e) the Pd₁Au₁/30-None catalyst was treated as follows: the Pd₁Au₁/30-None catalyst was mixed with 3 mL of LA (0.1 g mL⁻¹), diluted to 45 mL and shaken for 5 hours. Then the catalyst was washed with water for several times and finally collected by centrifugation.

Fig. S17 The volume of the generated gas (H₂ + CO₂) from formic acid dehydrogenation versus time over the commercial Pd/C catalyst in different solutions at 50 °C (FA: 6 mol L^{-1} , n_{metal} : n_{FA} = 0.02).

Fig. S18 Volume of gas (H₂ + CO₂) released from formic acid dehydrogenation versus time over (A) Pd₁Au₁/30-LA and Pd₁Au₁/72-LA, and (B) Pd₁Au₁/20-LA at 50 °C (n_{*FA*} = 3 mmol, n_{*metal*} : n_{*FA*} = 0.02).

Fig. S19 Durability test of the as-prepared Pd₁Au₁/30-LA catalyst for the dehydrogenation of FA at 50 °C by consecutively adding 0.5 mL of FA (FA: 6 mol L⁻¹, n_{metal} : $n_{FA} = 0.02$).

Fig. S20 (A, B) TEM, (C) HAADF-STEM images and (D) XRD pattern of the asprepared $Pd_1Au_1/30$ -LA catalyst after 5 runs for the dehydrogenation of FA at 50 °C. XRD pattern of the $Pd_1Au_1/30$ -LA catalyst before the catalysis was also provided in (D) for comparison.

Fig. S21 Volume of gas (H₂ + CO₂) released from formic acid dehydrogenation versus time over (A) Pd₁Au₁/30-LA and (B) Pd₁Au₁/20-LA at 60 °C (n_{FA} = 3 mmol, n_{FA} / n_{SF} = 1 : 3, n_{Pd+Au} : n_{FA} = 0.02).

Fig. S22 Volume of gas (H₂ + CO₂) released from formic acid dehydrogenation versus the time over the as-prepared PdAu/72-LA catalysts with different Au/Pd ratios at 60 °C ($n_{FA} = 3 \text{ mmol}$, $n_{FA} / n_{SF} = 1 : 3$, $n_{metal} : n_{FA} = 0.02$).

Fig. S23 Gas chromatograms of gas generated from FA dehydrogenation over the asprepared $Pd_1Au_1/72$ -LA catalyst at 60 °C, with CO, air, H_2 (A) and CO₂ (B) as the reference gases respectively. The results demonstrate the presence of H_2 and CO₂ in the released gas, and no CO gas was observed at the detection limit.

Fig. S24 (A, B) Volume of gas (H₂ + CO₂) released from formic acid dehydrogenation versus time over the as-prepared Pd₁Au₁/72-LA catalyst at 60 °C, with different FA/SF ratios ($n_{FA} = 3 \text{ mmol}$, $n_{FA} / n_{SF} = 1 : 3$, $n_{metal} : n_{FA} = 0.02$).

Fig. S25 Durability test of the as-prepared Pd₁Au₁/72-LA catalyst for the dehydrogenation of FA at 60 °C, in an aqueous FA/SF solution ($n_{FA} = 3 \text{ mmol}$, $n_{FA} / n_{SF} = 1 : 3$, $n_{metal} : n_{FA} = 0.02$).

Fig. S26 (A) TEM, (B) HAADF-STEM images and (D) XRD pattern of as-prepared $Pd_1Au_1/72$ -LA catalyst. XRD pattern of the $Pd_1Au_1/72$ -LA catalyst (C) before and (D) after catalysis.

Catalyst	Medium	Temp. /K	СО	TOF/ h ⁻¹	E _a /kJ	Ref.
			evolution		mol ⁻¹	
		298		1881		
		303		2069		
Pd ₁ Au ₁ /30-LA	FA	313		3168	38.9	This work
		323	no	5013		
		333		8355		
		303		3583		
Pd ₁ Au ₁ /72-LA	FA/SF	313		5268	34.4	This work
		323		8530		
		333	no	11958		
Au@Schiff-SiO ₂	FA	323	no	1633*	71.6	1
Pd/CN _{0.25}	FA	298	no	391*	48.8	2
Co _{0.30} Au _{0.35} Pd _{0.35} /C	FA	298	no	4.6*	_	3
AuPd-MnO./ZIF-	FΔ	298	no	122*		Δ
8-rGO	ľΑ	298	no	122		4
0.8Pd0.2Ni(OH)2	FA	333	< 10 ppm	1876*	52.4	5
@S-1		555	11	1070	02.1	U U
Au/ZrO ₂ NCs	FA/NEt ₃	323	<5 ppm	1063*	_	6
Pd/N-MSC-30	FA/SF	333	no	8414	43.7	7
Pd/C_m	FA/SF	333	no	5842*	39.6	8
(Co ₆)Ag _{0.1} Pd _{0.9} /R	FA/SF	333	no	4711	43.1	9
GO						
Pd/MSC-30	FA/SF	323	no	2623	38.6	10
Pd/S-1-in-K	FA/SF	323	< 10 ppm	3027	39.2	11
Pd/PDA-rGO	FA/SF	323	no	3810	54.3	12

Table S4 Formic acid dehydrogenation performance over different state-of-artheterogeneous catalysts.

Co ₄₈ Au ₅ Pd ₄₇	FA/SF	323	no	361	67.1	13
@MIL-101-NH ₂						
Pd@CN900K	FA/SF	333	no	14400	46.9	14
Catalyst	Medium	Temp. /K	СО	TOF/ h ⁻¹	E _a /kJ	Ref.
			evolution		mol ⁻¹	

FA = formic acid, SF = sodium formate. The TOF with a symbol of '*' was calculated by us from the reported results.

References

Q. Liu, X. Yang, Y. Huang, S. Xu, X. Su, X. Pan, J. Xu, A. Wang, C. Liang, X.
 Wang, T. Zhang, *Energy Environ. Sci.*, 2015, 8, 3204.

2 Q. Y. Bi, J. D. Lin, Y. M. Liu, H. Y. He, F. Q. Huang, Y. Cao, *Angew. Chem. Int. Ed.*, 2016, **55**, 11849.

3 Z. L. Wang, J. M. Yan, Y. Ping, H. L. Wang, W. T. Zheng, Q. Jiang, *Angew*. *Chem. Int. Ed.*, 2013, **52**, 4406.

4 J.-M. Yan, Z.-L. Wang, L. Gu, S.-J. Li, H.-L. Wang, W.-T. Zheng, Q. Jiang, *Adv. Energy Mater.*, 2015, **5**, 1500107.

5 Q. Sun, N. Wang, Q. Bing, R. Si, J. Liu, R. Bai, P. Zhang, M. Jia, J. Yu, *Chem*, 2017, **3**, 477.

Q. Y. Bi, X. L. Du, Y. M. Liu, Y. Cao, H. Y. He, K. N. Fan, J. Am. Chem. Soc.,
2012, 134, 8926.

Z. Li, X. Yang, N. Tsumori, Z. Liu, Y. Himeda, T. Autrey, Q. Xu, ACS Catal.,
2017, 7, 2720.

- 8 Q. L. Zhu, N. Tsumori, Q. Xu, J. Am. Chem. Soc., 2015, 137, 11743.
- 9 Y. Chen, Q. L. Zhu, N. Tsumori, Q. Xu, J. Am. Chem. Soc., 2015, 137, 106.
- 10 Q.-L. Zhu, N. Tsumori, Q. Xu, Chem. Sci., 2014, 5, 195.
- 11 N. Wang, Q. Sun, R. Bai, X. Li, G. Guo, J. Yu, J. Am. Chem. Soc., 2016, 138,

7484.

- 12 F.-Z. Song, Q.-L. Zhu, N. Tsumori, Q. Xu, ACS Catal., 2015, 5, 5141.
- 13 P. Zhao, W. Xu, D. Yang, W. Luo, G. Cheng, *ChemistrySelect*, 2016, 1, 1400.
- 14. Q. Wang, N. Tsumori, M. Kitta and Q. Xu, ACS Catal., 2018, 8, 12041.