Supporting information for

Accelerating hole extraction by inserting 2D Ti₃C₂-MXene interlayer

to all inorganic perovskite solar cells with long-term stability

Taotao Chen,^{‡a} Guoqing Tong,^{‡*b} Enze Xu,^{‡a} Huan Li,^a Pengcheng Li,^a Zhifeng Zhu,^a Jianxin Tang,^c Yabing Qi^{*b} and Yang Jiang^{*a,c}

^aSchool of Materials Science and Engineering, Hefei University of Technology,

Hefei, Anhui 230009, P. R. China.

*E-mail: apjiang@hfut.edu.cn.

^bEnergy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of

Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan.

*E-mail: GUOQING.TONG@OIST.jp; Yabing.Qi@OIST.jp

^cJiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China.

[‡] T. Chen, G. Tong and E. Xu contributed equally to this work.

Experimental Section

Synthesis of MXene:

1 g raw Ti₃AlC₂ powders (purchased from Jilin 11 technology Co., Ltd.) were added slowly into 20 ml HF (40%) solution and stirred for 24 h at room temperature. Then the colloidal solution was washed with deionized water for several times until the PH was above 5. The obtained powder was dried under vacuum at 60 °C for 12 h. In order to delaminate the Ti₃C₂T_x, 0.5 g Ti₃C₂T_x powders were added into 10 ml 25% tetramethylammonium hydroxide aqueous solution (TMAOH) solution stirring for 24 h. Then the mixture was washed and centrifuged by isopropanol three times. In order to prepare few-layer MXene nanosheets, 100 mg delaminated Ti₃C₂T_x powder was poured into 50 ml isopropanol (\geq 99.7%, Sinopharm Chemical Reagent Co., Ltd.) and sonicated for 4 h under Ar atmosphere. Finally, after centrifugation for 1 h at 3500 rpm, a light green supernatant solution was obtained (0.4 mg ml⁻¹).

Device fabrication:

The FTO substrates were first washed in deionized water (containing detergent) by sonication for 20 min. Then the substrates were cleaned by acetone, ethyl alcohol and deionized waterfor 30 min in sequence. The electron transport layer was prepared by spin-coated TiO₂ on the dried FTO substrates with a speed of 3000 rpm, 30s, and then moved to the furnace to heat. The temperature kept 500 °C for 30 min in the open air. The inorganic CsPbBr₃ film was prepared in the vacuum system with a vacuum degree of ~10⁻⁴ Pa. The CsBr was first deposited on the FTO/c-TiO₂ substrates with a speed of ~0.4 Å/s. The PbBr₂ film was coated on the top of CsBr film by vapor deposition at a speed of ~0.5 Å/s. Then the samples were annealed at 350 °C for 30 min in the air. The Mxene solution (2 mg ml⁻¹) was then spin-coated on the sample at a speed of 2500 rpm and treated at 100 °C for 5 min for two times. After repeat it for three times, the commercial carbon ink was coated on the surface of MXene layer and treated at 80°C for several hours. The active areas of devices are 0.09 cm².

Characterization:

X-ray diffraction (XRD) patterns of inorganic perovskite films were identified with a Cu K α radiation (D/MAX2500V, Japan) from 10° to 60°. Absorption spectra were performed by a UV-visible spectrophotometer (UV-2550). The interface component of film was conducted by the X-ray photoelectron spectra (XPS, Thermo ESCALAB 250). The ultraviolet photoemission spectroscopy (UPS) was conducted by an X-ray photoelectron spectrometer (XPS-AXIS Ultra HAS, Kratos) equipped with monochromatic Al-K α = 1486.6 eV and nonmonochromatic He-I α = 21.22 eV sources. The surface morphologies and cross section of inorganic perovskite films were performed by a field emission scanning electron microscopy (FE-SEM, Sigma Zeiss). Time-resolved photoluminescence (TRPL) decay tests were conducted by EI-FLS980-TCSPC (Edinburgh Instruments, UK) using 375 nm laser as the excitation light source. The space-charge limited current (SCLC) data were acquired with a semiconductor system equipped with probe station and Keithley 4200-SCS.

Electrochemical impedance spectroscopy (EIS) were carried out by using the electrochemical workstation (Zahner, Germany) with the frequency range from 0.1 Hz to 10^5 Hz under a bias voltage (10 mV) in the dark condition. J-V curves were measured on a Keithley 2636 system sourcemeter equipped with a Xenon lamp solar simulator (Zolix). The light intensity was~100 mW cm⁻². The spectral response was collected on the EQE measurement system (SCS100, Zolix). All the tests were carried out in the open air with RH~45%.

Fig. S1 (a) C 1s, (b) O 1s and (c) Ti 2p XPS spectra of Ti_3C_2 -MXene.

Fig. S2 Top-view SEM image of raw Ti_3AlC_2 powder.

Fig. S3 Top-view SEM image of Ti_3C_2 -MXene nanosheets.

Fig. S4 (a) 2D and (b) 3D AFM image of the CsPbBr₃ film.

Fig. S5 The survey of UPS spectra of Ti_3C_2 -MXene and carbon.

Fig. S6 TRPL curves of the CsPbBr₃ film with/without Ti₃C₂-MXene and carbon

Fig. S7 Nyquist plots of inorganic PSCs with and without Ti₃C₂-MXene.

Fig. S8 Photovoltaic parameter distributions of CsPbBr₃ PSCs with/without MXene.

Fig. S9 Normalized V_{oc} , J_{sc} , FF and PCE stability of the CsPbBr₃/Ti₃C₂-MXene PSCs in the air

with humidity of ~45%.

Fig. S10 Normalized V_{oc}, J_{sc}, FF and PCE stability of the CsPbBr₃/Ti₃C₂-MXene PSCs at the high temperature condition @ 80°C.

Sample	τ_1 (ns)	τ_2 (ns)	A ₁ (%)	A ₂ (%)	τ _{ave.} (ns)
CsPbBr ₃	0.318	3.555	29.46	70.54	3.438
CsPbBr ₃ /Ti ₃ C ₂ -MXene	0.534	5.746	26.13	73.87	5.582
CsPbBr ₃ /C	0.518	3.078	85.08	14.32	2.877
CsPbBr ₃ /Ti ₃ C ₂ -	0.333	4.103	83.08	16.92	1.921
MXene/C					

 Table S1 The time coefficients and relative magnitude of PL decay trace under 375 nm

 excitation wavelength.

Table S2 Photovoltaic parameters of CsPbBr₃ PSCs with/without MXene.

Sample]	R _s	R _{rec}		CPE-Yo			CPE-n	Chsq
	(oh		(oh		(S-		(S-	
	m)	r	n)	S	ec^n/cm ²)		sec^n/cm ²)	
CsPbBr ₃		5	5.2		391	2.126E	-7	0.9653	5.74E
		20	26		5				-4
CsPbBr ₃ /Ti ₃ C	2-	2	2.3	2	454	3.573E	-7	0.9275	1.70E
MXene		90	6		8				-3

Table S3 Photovoltaic parameters of CsPbBr₃ PSCs with/without MXene.

Device		Voc	J _{sc}	FF	РСЕ	
		(V)	(mA cm ⁻²)	(%)	(%)	
CsPbBr ₃ Average		1.334±0.089	6.805±1.155	68.285±8.085	6.353±1.857	
	Champion	1.423	7.96	76.37	8.21	
CsPbBr ₃ /	Average	1.349±0.091	7.365±1.385	69.23±8.18	7.098±1.912	
Ti ₃ C ₂ -MXene	Champion	1.440	8.75	77.41	9.01	

-				-	
Material	Additive	РСЕ	Life time	Life time	Ref.
			(air)	(heat)	
CsPbBr ₃	Ti ₃ C ₂ -MXene	9.01%	1900 h	600 h	This work
				@80°C	
$FA_{0.8}Cs_{0.2}PbI_{2.64}Br_{0.36}$	PEO	14.9%	192 h	192 h	Adv. Mater. 2019,
				@85°C	31, 1804284.
$FA_{0.85}Cs_{0.15}PbI_3$	amorphous	18.8%	1000 h	/	Adv. Energy
	silica				Mater. 2018, 8,
					1800232
MAPbI ₃	$g-C_3N_4$	19.41%	/	/	Adv. Funct.
					Mater. 2018, 28,
					1705875
MAPbI ₃	ТВСР	19.4%	480 h	/	Chem, 2018, 4, 1.
		15.00/	200.1		
$(FAPbI_3)_{0.7}(CsSnI_3)_{0.3}$	$SnF_2 \bullet 3FACI$	15.8%	288 h	/	Adv. Energy
					Mater. 2018, 8,
					1800997.
CsPbI ₃	PEAI	15.07%	300 h	/	Nat. Commun.
					2018, 9, 4544.
CsPbI ₃	PVP	10.74%	500 h	500 h	Nat. Commun.
				@60°C	2018, 9, 1076.
CsPbBr ₃	CsPb ₂ Br ₅	6.81%	2400 h	/	ACS Appl. Mater.
					Interfaces, 2018,
					10, 7145

 Table S4 Comparison of the performance of inorganic and hybrid PSCs using additive in

 previous literature and in this work.

CsPbBr ₃	CsPb ₂ Br ₅	8.34%	1000 h	/	J. Mater. Chem. A	
					2018,6,14255.	
CsPbBr ₃	/	9.72%	3120 h	960 h	Angew. Chem. Int.	
			(RH 90%)	@80°C	Ed. 2018, 5	57,
					3787.	