Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information

A porous hybrid material based on calixarene dye and TiO₂ demonstrating high

and stable photocatalytic performance

Yi-Fan Chen,^{a,b} Jian-Feng Huang,^a Min-Hui Shen,^a Jun-Min Liu,^{a, *} Li-Bo Huang,^a

Yu-Hui Zhong,^a Su Qin,^a Jing Guo,^a Cheng-Yong Su^{a, *}

^a School of Chemistry and School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.

^b Hainan Provincial Key Lab of Fine Chem, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China.

Corresponding authors:

liujunm@mail.sysu.edu.cn (J.-M. Liu); cesscy@mail.sysu.edu.cn (C.-Y. Su).

Contents

1.	Fig. S1. Synthesis of HO-TPA.	54
2.	Fig. S2. Synthesis of HO-TPA-TiO ₂	S 8
3.	Fig. S3. PXRD patterns recorded in the formation process of HO-TPA-TiO ₂ .	S8
4.	Fig. S4. N ₂ sorption isotherms of HO-TPA-TiO ₂ system at 77K	S9
5.	Fig. S5. N ₂ sorption isotherms of Pt/HO-TPA-TiO ₂ , HO-TPA-TiO ₂ with 500	°C
	calcination, Gel-TiO ₂ and P25-TiO ₂ at 77 K	510
6.	Fig. S6. The pore size distribution of HO-TPA-TiO ₂ system	511
7.	Fig. S7. SEM images of HO-TPA-TiO ₂	311
8.	Fig. S8. XPS measurement for Gel-TiO ₂	12
9.	Fig. S9. XPS measurement for HO-TPA-TiO ₂	513
10.	Fig. S10. EDX spectrum of Pt/HO-TPA-TiO ₂ S	513
11.	Fig. S11. XPS measurement for ReP	514
12.	Fig. S12. XPS measurement for ReP/HO-TPA-TiO ₂ after photocatalysis	515
13.	Fig. S13. The bonding mode between HO-TPA and TiO ₂	\$16
14.	Fig. S14. Mott-Schottky plot of Gel-TiO ₂	516
15.	Fig. S15. Cyclic voltammogram of HO-TPA	\$17
16.	Fig. S16. UV-vis absorption spectra and photoluminescence spectra of HO-T	'PA
in ($CH_2Cl_2 (E_{0-0} = 1240/\lambda_{int}).$	17
17.	Fig. S17. Cyclic voltammogram of ReP in 0.1 M TBAPF ₆ of THF soluti	ons
me	easured with a scan rate of 100 mV s ⁻¹ S	18
18.	Fig. S18. UV-vis diffraction and steady-state solid photoluminescence spectra	a of
HC	D-TPA-TiO ₂ (2.5/5.0/7.5 wt%)S	18
19.	. Fig. S19. The color of the dye doping shedding from $Pt/Gel-TiO_2/HO-TPA$ ((2.4
wt	%) and HO-TPA-TiO ₂ (5 wt%)S	\$20
20.	. Fig. S20. Photocatalytic action spectrum for H_2 evolution after 1 h irradiat	tion
unc	der 400, 420, 450, 470, and 515 nm LED light source	321

21. Fig. S21. Steady-state solid photoluminescence spectra of the HO-TPA, physical-
mixing Gel-TiO ₂ /HO-TPA, dye-sensitized Gel-TiO ₂ /HO-TPA, and hybrid HO-TPA-
TiO ₂
22. Fig. S22. ¹³ C NMR spectra of ¹³ CO ₂ and ¹³ CO before and after irradiationS22
23. Fig. S23. GC-MS spectra of ReP/HO-TPA-TiO ₂ dispersion in ¹² CO ₂ , and ¹³ CO ₂ -
saturated DMF
24. Fig. S24. Possible chemical processes for the two-electron reduction of CO_2 to
CO catalyzed by a Re(I) complex (PReX)
25. Table S1. BET surface area, pore volume and pore width of HO-TPA-TiO ₂
system derived from 77 K N ₂ sorption isotherms
26. Table S2. Electrochemical properties of compounds used in this study (V vs.
Ag/AgCl)
27. Table S3. AQY results of Pt/HO-TPA-TiO ₂ (5.0 wt%) after 1h irradiation under
450 nm LED light source
28. Table S4. AQY results of some reported heterogeneous catalytic systems in
photocatalytic H ₂ production studies
29. Table S5. The apparent quantum yields on photocatalytic CO production for ReP/
HO-TPA-TiO ₂ (5.0 wt%) at 420, 450 nm and 500 nm

Experimental details

Fig. S1. The synthesis of HO-TPA.

Synthesis of Calix-2

Calix-1 (800 mg, 0.727 mmol), 5-(4,4,5,5-Tetramethyl-1,3,2- dioxaborolan-2- yl)-2,2'-bithiophene (1.06 g, 3.635 mmol), Pd(PPh₃)₄ (250 mg, 0.2181 mmol), and K₂CO₃ (5.53 g, 40.0 mmol) aqueous solution were added to a flask under nitrogen atmosphere, and then dimethoxyethane (100 mL) was added. The reaction mixture was refluxed at 90 °C for overnight, and then cooled and evaporated to dryness. The residue was dissolved in dichloromethane and the organic content was washed with water and saturated brines, and subsequently dried over anhydrous MgSO₄, filtered and evaporated to afford a crude product which was further purified by silica-gel column chromatography using petroleum ether and ethyl acetate as the eluent (10:1, v/v) to yield 911 mg light yellow solid. Yield: 87%. ¹H NMR (400 MHz, CDCl₃, δ): 7.31 (s, 4H), 7.29 (s, 8H), 7.24-7.23(m, 8H), 7.09 (d, *J* = 4.8 Hz, 8H), 7.02 (d, *J* = 3.2 H, 4H), 6.90 (t, *J* = 4.4 Hz, 4H), 6.86 (s, 8 H), 6.79 (d, *J* = 3.6 Hz, 8H), 6.70 (d, *J* = 4.0 Hz, 4H), 4.97 (s, 8H), 4.17 (d, *J* = 13.2 Hz, 4H), 2.94 (d, *J* = 13.6 Hz, 4H); ¹³C- NMR (100 MHz, CDCl₃, *δ*): 155.29, 143.28, 137.42, 135.60, 135.41, 129.95, 128.59, 128.29, 128.21, 127.77, 125.67, 124.57, 123.81, 123.18, 122.64, 76.80, 31.53; MALDI-TOF: *m/z* 1441.2527 ([M + H]⁺); 1463.2357 ([M + Na]⁺).

Synthesis of Calix-3

Calix-2 (247 mg, 0.172 mmol) and 1-bromo-2,5-pyrrolidinedione (125 mg, 0.703 mmol) were stirred in chloroform at room temperature for 10 h. The mixture was cooled and evaporated to dryness. The residue was extracted with dichloromethane and the combined organic extracts were washed with water and brine, and then dried over anhydrous MgSO₄, filtered and evaporated to afford a crude product which was further purified by silica-gel column chromatography with a mixture of petroleum ether and dichloromethane as the eluents (5:1, v/v) to yield 277 mg yellow solid. Yield: 92%. ¹H NMR (400 MHz, CDCl₃, δ) 7.32-7.30 (m, 8H), 7.29 (s, 4H), 7.27 (s, 4H), 7.26 (s, 4H), 6.87 (d, *J* = 4.0 Hz, 4H), 6.84 (s, 8H), 6.77 (d, *J* = 3.6 Hz, 4H), 6.72 (m, 8H), 4.98 (s, 8H), 4.18 (d, *J* = 13.2 Hz, 4H), 2.94 (d, *J* = 13.6 Hz, 4H); ¹³C-NMR (100 MHz, CDCl₃, δ): 155.46, 143.81, 139.33, 137.33, 135.69, 134.54, 130.61, 130.04, 129.95, 129.86, 128.37, 128.32, 128.28, 125.70, 124.65, 123.12, 122.64, 110.45, 76.82, 31.35; MALDI-TOF: *m/z* 1757.807 ([M]⁺).

Synthesis of Calix-4

Calix-3 (158 mg, 0.0899 mmol), 4-(diphenylamino)phenylboronic acid (156 mg, 0.3635 mmol), Pd(pph₃)₄ (31.2 mg, 0.0270 mmol), K₂CO₃ (278 mg, 2.16 mmol) aqueous solution were added to a flask under nitrogen atmosphere, and then dimethoxyethane (18 mL) was added. The reaction mixture was refluxed at 90 °C for overnight, and then was cooled and evaporated to dryness. The residue was dissolved in dichloromethane and the combined organic content was washed with water and saturated brines, and subsequently dried over anhydrous MgSO₄, filtered and evaporated to afford a crude product which was further purified by silica-gel column chromatography using petroleum ether and dichloromethane as the eluents (3:1, v/v) to yield 184.6 mg dark yellow solid. Yield: 85%. ¹H NMR (400 MHz, CDCl₃, δ): 7.36 (s, 4H), 7.34-7.31 (m, 14H), 7.28 (s, 4H), 7.22 (t, *J* = 8.0 Hz, 16H), 7.07 (d, *J* = 7.6

Hz, 16H), 7.01 (d, J = 7.6 Hz, 6H), 6.98 (s, 6H), 6.96 (s, 8H), 6.89 (s, 8H), 6.85 (d, J = 3.6 Hz, 4H), 6.75 (d, J = 3.6 Hz, 4H), 4.99 (s, 4H), 4.20 (d, J = 13.2 Hz, 4H), 2.97 (d, J = 13.6 Hz, 4H), 1.26 (s, 2H); ¹³C-NMR (100 MHz, CDCl₃, δ): 155.31, 147.53, 147.14, 143.15, 142.30, 137.44, 136.40, 135.71, 135.62, 129.94, 129.71, 129.41, 129.3, 128.64, 128.39, 128.30, 128.21, 126.35, 125.71, 124.65, 124.55, 124.51, 124.45, 124.23, 124.15, 123.78, 123.15, 122.94, 122.73, 76.81, 31.36; MALDI-TOF: m/z 2260.501 ([M + Na]⁺).

Synthesis of HO-TPA

Calix-4 (500 mg, 0.207 mmol) was dissolved in dry toluene (25 mL), and then anhydrous AlCl₃ (331 mg, 2.48 mmol) was added and stirred at room temperature for 3 h. The residue was added with HCl (0.2 M) aqueous solution and then extracted with dichloromethane. The combined organic extracts were washed with water and brine, and subsequently dried over anhydrous MgSO₄, filtered and evaporated to afford a crude product which was further purified by silica-gel column chromatography using petroleum ether and dichloromethane as the eluent (1:1, v/v) to yield 318 mg yellow green solid. Yield: 65%. ¹H NMR (400 MHz, CDCl₃, δ): 10.23 (s, 4H), 7.43 (d, *J* = 8.0 Hz, 8H), 7.34 (s, 4H), 7.30 (s, 4H), 7.25 (s, 8H), 7.23 (s, 4H), 7.16 (d, *J* = 7.6 Hz, 8H), 7.10 (d, *J* = 7.5 Hz, 16H), 7.08-7.06 (m, 4H), 7.03 (d, *J* = 7.4 Hz, 16H), 7.01 (s, 4H), 6.98-6.84 (m, 4H), 4.32 (s, 4H), 3.63 (s, 4H); ¹³C-NMR (100 MHz, CDCl₃, δ): 148.65, 147.63, 147.52,147.38, 142.93, 142.40, 136.44, 135.96, 130.11, 129.43, 129.36, 128.95, 128.67, 128.56, 128.17, 126.94, 126.46, 124.70, 124.63, 124.33, 123.72, 123.56, 123.23, 123.08, 122.98, 31.99; MALDI-TOF: *m/z* 2056.279 ([M+H]⁺).

Determination of apparent quantum yield (AQY) in in photocatalytic hydrogen production

The photocatalytic mixture was irradiated by an incident LED light source (Zolix, MLED4-1, M450L, $\lambda = 450$ nm, light intensity 100 mW cm⁻², irradiating area 0.8 cm²) at 20 °C. The number of incident photons was measured by a standard method using a

 K_3 [Fe^{III}(C₂O₄)₃] actinometer and the photon flux was determined to be 1083 µmol h⁻¹. The generated H₂ gas was analyzed by an Agilent 7820A gas chromatography with a thermal conductivity detector (TCD).

AQY (Φ) was calculated according to the following equation:

$$\phi = \frac{\text{number of transfered electrons}}{\text{number of incident photons}} \times 100\% = \frac{n(\text{H}_2) \times 2}{n(\text{photons})} \times 100\%$$

Determination of AQY in photoreduction of carbon dioxide

The apparent quantum yield (AQY) was measured using a band-pass filter (λ max = 450 nm, half width: 15 nm) and was estimated as follows:

$AQY(\%) = (2* N_{CO-y})/N_{ph}$

The N_{CO-y} is the number of CO produced. The N_{ph} is the number of photon emitted from light source. The calculation of N_{CO-y} is based on the fact that two photons are required to produce one molecule CO, according to the equations mentioned in the manuscript. The N_{ph} is calculated using the equation:

 N_{ph} = [Light intensity × Illumination area × Illumination time]

/[Average single photon energy] where the light intensity is detected by irradiation meter, the illumination area is controlled to $1*0.7 \text{ cm}^2$, and the average single photon energy (E_{ph}) is figured out using the equation: E_{ph} = hc/ λ . where h is the Planck constant, c indicates speed of light, and λ is the wavelength.

Determination of shedding amount of doped-dyes

10 mg catalyst Pt/Gel-TiO₂/HO-TPA (2.4 wt%) was dispersed and evacuated in 20 mL H₂O/TEOA (9:1 v/v) solution and then irradiated for 2 h, 4 h and 6 h under visible light ($\lambda > 420$ nm), respectively. These samples were centrifugated and immersed in 5 mL THF. The obtained dye solutions were analyzed by UV-vis absorption spectra to give the dye shedding amounts according to the Labmert-Beer law.

Fig. S2. Synthesis of HO-TPA-TiO₂ (5.0 wt%).

Fig. S3. XRD of the intermidiaters at different reaction time before calcination in the formation process of HO-TPA-TiO₂ (5.0 wt%).

Fig. S4. N_2 adsorption-desorption isotherms of HO-TPA-TiO₂ (2.5/5.0/7.5 wt%) with and without 300 °C calcination measured under 77 K.

Fig. S5. N₂ adsorption-desorption isotherms of HO-TPA-TiO₂ (5.0 wt%) with 300 °C calcination, Pt/HO-TPA-TiO₂ (5.0 wt%) with 300 °C calcination, HO-TPA-TiO₂ (5.0 wt%) with 500 °C calcination, Gel-TiO₂ and P25-TiO₂ measured under 77 K.

Fig. S6. The pore size distributions of HO-TPA-TiO₂ (5.0 wt%) system and Gel-TiO₂.

Fig. S7. (A) and (B) SEM, (C) and (D) the elemental mapping image, and (E) EDX of HO-TPA-TiO₂ (5.0 wt%).

Fig. S8. X-ray photoelectron spectra for Ti and O of Gel-TiO₂. Atomic ratio of Ti : O = $25\% : 52\% \approx 1 : 2$.

Fig. S9. X-ray photoelectron spectra for Ti, O, N and S of HO-TPA-TiO₂ (5.0 wt%). Atomic ratio of Ti : O : N : S = 24% : 53% : 1.91% : 0.67%.

Fig. S10. EDX spectrum of Pt/HO-TPA-TiO₂ (5.0 wt%).

Fig. S11. XPS measurements for ReP. Atomic ratio of Re : N : P : Cl = 2.9% : 6.6% : 5.8% : $2.1\% \approx 1$: 2 : 2: 1.

Fig. S12. XPS measurements for ReP/HO-TPA-TiO₂ (5.0 wt%) photocatalyst with 1.25 M TEOA as electron donor in 5 mL CO₂-saturated DMF after visible light irradiation for 24 h ($\lambda > 420$ nm). 10 mg catalysts were loaded with 0.041 µmol ReP. Atomic ratio of Ti: O: Re : P : N : S = 23% : 51% : 0.29% : 0.56% : 2.8% : 0.43%.

Fig. S13. The bonding mode between HO-TPA and TiO_2 .

Fig. S14. Mott-Schottky plot of Gel-TiO₂ in (A) 0.2 M Na₂SO₄ aqueous solution and (B) DMF solution containing 0.1 M TBAP.

Fig. S15. Cyclic voltammogram of HO-TPA in 0.1 M TBAPF₆ of THF solutions measured with a scan rate of 100 mV s⁻¹.

Fig. S16. UV-vis absorption spectra and photoluminescence spectra of HO-TPA in CH_2Cl_2 ($E_{0.0} = 1240/\lambda_{int}$).

Fig. S17. Cyclic voltammogram of ReP in 0.1 M TBAPF₆ of THF solutions measured with a scan rate of 100 mV s⁻¹.

Fig. S18. (A) UV-vis diffraction and (B) steady-state solid photoluminescence spectra of HO-TPA-TiO₂ (2.5/5.0/7.5 wt%).

Experiment of doping-dye shedding

The corresponding characterization of dye doping shedding from the catalysts Pt/Gel-TiO₂/HO-TPA (2.4 wt%) and Pt/HO-TPA-TiO₂ (5.0 wt%) was evaluated by UV-vis absorption spectra. The shedding amounts of the dye for Pt/Gel-TiO₂/HO-TPA (2.4 wt%) were about 0.040 (0.82 wt%), 0.017 (0.35 wt%) and 0.016 (0.32 wt%) μ moL for 2, 4 and 6 h under light illumination, respectively. The shedding dye amounts in reaction solutions decreased along with the increase of illumination time. One explanation could be that a portion of shedding dyes has degraded by photocatalyst under long-time illumination. As a control, the dye shedding from HO-TPA-TiO₂ (5 wt%) has not been detected under the same irradiation conditions. The color of the supernatant fluid in the photocatalytic system for Pt/Gel-TiO₂/HO-TPA (2.4 wt%) and Pt/HO-TPA-TiO₂ (5.0 wt%) was shown in Fig. S19. The color of the supernatant fluid based on Pt/Gel-TiO₂/HO-TPA (2.4 wt%) was yellow, while the reaction solution based on HO-TPA-TiO₂ (5 wt%) was colorless under the same illumination. The results indicated the hybrid materials had higher stability than common surface dye-sensitized system.

Fig. S19. The color of the dye doping shedding from Pt/Gel-TiO₂/HO-TPA (2.4 wt%) and HO-TPA-TiO₂ (5 wt%) after different time (2 h, 4 h and 6 h) illumination under visible light irradiation ($\lambda > 420$ nm).

Fig. S20. Photocatalytic action spectrum for H_2 evolution after 1 h irradiation under 400, 420, 450, 470, and 515 nm LED light source.

Fig. S21. Steady-state solid photoluminescence spectra of the **HO-TPA**, physicalmixing Gel-TiO₂/HO-TPA (5.0 wt%), surface dye-sensitized Gel-TiO₂/HO-TPA (5.0 wt%), and hybrid HO-TPA-TiO₂ (5.0 wt%).

Fig. S22. ¹³C NMR spectra of ¹³CO₂ and ¹³CO before (A) and after (B) irradiation. CO₂-saturated DMF- d_7 containing 10 mg of ReP/HO-TPA-TiO₂ (5.0 wt%) disperision with 134 mg BIH under visible light irradiation ($\lambda > 420$ nm) for 24 h. The symbols \blacklozenge and \bullet represent the peaks of DMF and BIH, respectively.

Fig. S23. GC-MS spectra of ReP/HO-TPA-TiO₂ (5.0 wt%) dispersion in (A) ¹²CO₂, and (B) ¹³CO₂-saturated DMF with BIH as the electron donor under visible light irridiation ($\lambda > 420$ nm) for 24 h.

Fig. S24. Possible chemical processes for the two-electron reduction of CO_2 to CO catalyzed by a Re(I) complex (PReX).

Sample	Surface Are	Pore volume	Pore width (nm)	
	(m ³ /g)	(ml/g)	mesopore	micropore
P25-TiO ₂	55.40	0.162	29.40	
HO-TPA-TiO ₂ (5 wt%) with 500 °C calcination	68.42	0.176	7.52	1.83
HO-TPA-TiO ₂ (2.5 wt%) with 300 °C calcination	176.2	0.247	4.41	1.54
HO-TPA-TiO ₂ (2.5 wt%) without calcination	177.6	0.203	3.70	1.54
HO-TPA-TiO ₂ (5.0 wt%) with 300 °C calcination	184.7	0.218	3.70	1.68
HO-TPA-TiO ₂ (5.0 wt%) without calcination	188.4	0.214	3.39	1.54
Pt/HO-TPA-TiO ₂ (5.0 wt%) with 300 °C calcination	182.3	0.205	3.39	1.42
HO-TPA-TiO ₂ (7.5 wt%) with 300 °C calcination	188.9	0.244	4.04	1.10
HO-TPA-TiO ₂ (7.5 wt%) without calcination	210.4	0.214	3.39	1.54
Gel-TiO ₂ with 300 °C calcination	162.9	0.233	4.41	1.68

Table S1. BET surface area, pore volume and pore width of HO-TPA-TiO₂ system derived from 77 K N_2 sorption isotherms.

Table S2. Electrochemical properties of compounds used in this study (V vs.Ag/AgCl).

Compounds	Oxidation /	Reduction /		E ₀₋₀ /	E_{OX}^{*} /	
	V	V		eV	V	
_	E_{ox}	E_{pc}	E_{Pa}	$E_{1/2}^{\text{red}}$	_	
НО-ТРА	1.24	-	-	-	2.74	-1.50
ReP	-	-1.11	-0.55	-0.83	-	-

Table S3. AQY results of Pt/HO-TPA-TiO₂ (5.0 wt%) after 1h irradiation under 450 nm LED light source.

Wavelength/nm	420	425	450	470	515
AQY	2.2%	1.9%	1.3%	0.6%	0.1%

Table S4. AQY results of some reported heterogeneous catalytic systems inphotocatalytic H_2 production studies.

Catalyst	Sacrificial agent	Wavelength/nm	AQY/%	Reference
Pt/Calix-3-TiO ₂ (7.5%)	TEOA	450	2.9	Ref.1 (our work)
Dyad (dye)/Pt/TiO ₂	Ascorbic acid	420	1.3	Ref.2
TiO ₂ /Pt/Eosin-Y	TEA	520	10	Ref. 3
CdSe/MPA/TiO ₂	EDTA	450	0.6	Ref.4
TiO ₂ /Pt (alizarine) ₂	EDTA	500	0.5	Ref.5
NiS/Pt/TiO ₂ (black)	Methanol	420	5.4	Ref.6
TiO ₂ /Pt/ mecrocyanine dye	EDTA	517	1.8	Ref.7
TiO ₂ /Pt/ coumarin dye	NaI	440	2.5	Ref.8
1,1'- binaphthalene- 2,2'-diol/Pt/ TiO ₂	TEA	450	0.02	Ref.9
Pt/HO-TPA-TiO ₂ (5.0 wt%)	TEOA	420	1.9	This paper

Reference

- J.-F. Huang, J.-M Liu, L.-M. Xiao, Y.-H. Zhong, L. Liu., S. Qin, J. Guo, C.-Y. Su, J. Mater. Chem. A, 2019, 7, 2993.
- [2] Y. Sun, Y. Sun, C. Dall'Agnese, X.-F. Wang, G. Chen, O. Kitao, H. Tamiaki, K. Sakai, T. Ikeuchi, S. Sasaki, ACS Appl. Energy Mater., 2018, 1, 2813.
- [3] X. Liu, S. Min, Y. Xue, Y. Lei, Y. Chen, F. Wang, Z. Zhang, *Renew. Energ.*, 2019, **138**, 562.
- [4] R. Abe, K. Hara, K. Sayama, K. Domen, H. J. Arakawa, J. Photochem. Photobiol. A, 2000, 137, 63.
- [5] V. S. Zakharenko, A. V. Bulatov, V. N. Parmon, *React. Kinet. Catal. Lett.*, 1988, 36, 295.
- [6] P. Qiao, J. Wu, H. Li, Y. Xu, B. Sun, L. Ren, K. Pan, L. Wang, W. Zhou. Nanotechnology, 2019, 30, 125703.
- [7] R. Abe, K. Sayama, H. J. Sugihara, Sol. Energy Eng., 2005, 27, 413.
- [8] R. Abe, K. Sayama, H. Arakawa, Chem. Phys. Lett., 2002, 362, 441.
- [9] S. Ikeda, C. Abe, T. Torimoto, B. Ohtani, J. Photochem. Photobiol. A, 2003, 160, 61.

Table S5. The apparent quantum yields on photocatalytic CO production for ReP/ HO-TPA-TiO₂ (5.0 wt%) at 420, 450 nm and 500 nm.

Wavelength	N _{co-y}	N _{ph}	Light	Illumination	AQY/
/nm			intensity/mW·cm ⁻²	time/s	%
420	9.544E+1	2.584E+2	17	7200	0.37
	7	0			
450	3.475E+1	2.769E+2	17	7200	0.13
	7	0			
500	3.077E+1	3.077E+2	17	7200	0.047
	7	0			