Synthesis of three-dimensional free-standing WSe₂/C hybrid nanofibers as anodes for high-capacity lithium/sodium ion batteries

Jing Li¹, Shaobo Han², Junwei Zhang³, Junxiang Xiang¹, Xingqun Zhu¹, Ping Liu¹,

Xuefeng Li¹, Chao Feng¹, Bin Xiang^{1*}, Meng Gu^{2*}

¹Hefei National Research Center for Physical Sciences at the Microscale, Department

of Materials Science & Engineering, CAS Key Lab of Materials for Energy Conversion,

University of Science and Technology of China, Hefei, Anhui 230026, China

²Department of Materials Science and Engineering, Southern University of Science and

Technology, Shenzhen, 518055, China

³Key Laboratory of Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology and Electron Microscopy Centre of

Lanzhou University, Lanzhou University, Lanzhou 730000, China

*Corresponding author: binxiang@ustc.edu.cn; gum@sustc.edu.cn; gum@sustc.edu; <a href="mailto:gum@s

Fig. S1 The SEM image of bulk WSe₂-C composites.

Fig. S2 TGA curve of WSe₂/C nanofibers from 25 °C to 800 °C with a rate of 10 °C min⁻¹ under air.

Fig. S3 The EDS spectrum of the B-WSe₂-C.

Fig. S4 The N_2 adsorption and desorption isotherms of (a) WSe_2/C composites and (b) B-WSe₂-C. Inset image in (a) is the pore-size distribution curve of the WSe_2/C nanofibers.

Fig. S5 The SAED pattern of WSe_2/C nanofibers before lithiation.

Fig. S6 The CV curves of B-WSe₂-C electrode in initial three cycles with a scan rate of 0.1 mV s^{-1} .

Fig. S7 The charge-discharge curves of the B-WSe₂-C in the voltage range of 0.005-3 V vs Li/Li^+ at a scan rate of 0.1 mV s⁻¹.

Materials	Current	Carala muchan	Capacity	Deferences	
	density (A g ⁻¹)	Cycle number	(mAh g ⁻¹)	Keterences	
WSe ₂	0.03	30	400	S1	
WSe ₂	1	1500	224.9	S2	
WSe ₂ /CMK-5	0.5	600	490	S3	
WSe ₂ /rGO	0.063	80	528	S4	
1T@2H	2	800	510	95	
WS ₂ @CFC	2	800	510	55	
NDG-MoS ₂ -	1	600	550	56	
NDG	I	600	552	50	
MoS ₂ -	0.1	100	680	67	
MoSe ₂ @C	0.1	100	000	57	
MoSe ₂ /N-C	8	200	277	S8	
ReS ₂ /N-CNFs	0.1	400	440	S9	
WSe ₂ /C	0.1	100	608.3	This work	
	25	10000	257		

 Table. S1 Comparison of the lithium storage performance of our work to other

 transition metal dichalcogenides.

Fig. S8 SEM images of (a) the B-WSe₂-C composites after 10 cycles at current density of 0.1 A g^{-1} (b) WSe₂/C nanofibers after 10 cycles at a current density of 0.1 A g^{-1} . (c) The SEM image of WSe₂/C after 2000 cycles at a current density of 25 A g^{-1} .

Fig. S9 Electrochemical impedance spectroscopy of WSe₂/C and B-WSe₂-C electrodes before and after cycling. The inset image is the equivalent circuit of the system.

Sample	$R_{e}(\Omega)$	$R_{ct}(\Omega)$	
WSe ₂ /C before cycling	1.05	47.55	
WSe ₂ /C after 10 cycles	2.76	90.42	
B-WSe ₂ -C before cycling	5.95	61.17	
B-WSe ₂ -C after 10 cycles	9.50	111.80	

Table. S2 The fitted parameters of the R_e and R_{ct} of the WSe₂/C and B-WSe₂-C.

Fig. S10 The CV curves of the B-WSe₂-C in the voltage range of 0.005-3 V vs Na/Na⁺ at a scan rate of 0.1 mV s⁻¹.

Fig. S11 The discharge-charge curves of B-WSe₂-C in a potential range of 0.005-3 V vs Na/Na⁺.

Materials	Current	Cycle number	Capacity	References
	density (A g ⁻¹)		(mAh g ⁻¹)	
WSe ₂	0.02	30	190	S10
WSe ₂	0.4	50	400	S11
WSe ₂ /C	0.2	50	270	S12
1T	0.05	200	313	S13
MoS ₂ /Graphene				
MoSe ₂ /N-C	0.1	120	552.1	S14
WS ₂ /CNT-rGO	0.2	100	252.9	S15
VS ₂ -SNSs	0.2	100	245	S16
ReS ₂	0.1	800	245	S17
NbS ₂	0.5	100	157	S18
WSe ₂ /C	0.1	100	257.8	This work

Table. S3 Comparison of the sodium storage properties of our materials with reported transition metal dichalcogenides.

References

- S1 Y.Y. Lee, G.O. Park, Y.S. Choi, J.K. Shon, J. Yoon, K.H. Kim, W-S. Yoon, H. Kim,
 J.M. Kim, *RSC Adv.*, 2016, 6, 14253-14260.
- S2 W. Yang, J. Wang, C. Si, Z. Peng, Z. Zhang, *Nano Res.*, 2017, **10**, 2584-2598.
- S3 J. Wang, L. Chen, L. Zeng, Q. Wei, M. Wei, ACS Sustainable Chem. Eng., 2018, 6, 4688-4694.
- S4 X. Wang, J. He, B. Zheng, W. Zhang, Y. Chen, *Electrochim. Acta*, 2018, 283, 1660-1667.
- S5 T. Wang, C. Sun, M. Yang, L. Zhang, Y. Shao, Y. Wu, X. Hao, *Electrochim. Acta*, 2018, 259, 1-8.
- S6 B. Chen, Y. Meng, F. He, E. Liu, C. Shi, C. He, L. Ma, Q. Li, J, Li, N. Zhao, Nano Energy, 2017, 41, 154-163.
- S7 J. Yang, J. Zhu, J. Xu, C. Zhang, T. Liu, ACS Appl. Mater. Interfaces, 2017, 9, 44550-44559.
- S8 P. Ge, H. Hou, C.E. Banks, C.W. Foster, S. Li, Y. Zhang, J. He, C. Zhang, X. Ji, Energy Storage Mater., 2018, 12, 310-323.
- M. Mao, C. Cui, M. Wu, M. Zhang, T. Gao, X. Fan, J. Chen, T. Wang, J. Ma, C.
 Wang, *Nano Energy*, 2018, 45, 346-352.
- S10 K. Share, J. Lewis, L. Oakes, R. E. Carter, A. P. Cohn, C. L. Pint, *RSC Adv.*, 2015, 5, 101262-101267.
- S11 W. Yang, J. Wang, C. Si, Z. Peng, Z. Zhang, *Nano Res.*, 2017, **10**, 2584-2598.
- S12 Z. Zhang, X. Yang, Y. Fu, *RSC Adv.*, 2016, 6, 12726-12729.
- S13 X. Geng, Y. Jiao, Y. Han, A. Mukhopadhyay, L. Yang, H. Zhu, Adv. Funct. Mater.,

2017, 27, 1702998.

- S14 P. Ge, H. Hou, C. E. Banks, C. W. Foster, S. Li, Y. Zhang, J. He, C. Zhang, X. Ji, Energy Storage Mater., 2018, 12, 310-323.
- S15 Y. Wang, D. Kong, W. Shi, B. Liu, G. J. Sim, Q. Ge, H. Y. Yang, Adv. Energy Mater., 2016, 6, 1601057.
- S16 R. Sun, Q. Wei, J. Sheng, C. Shi, Q. An, S. Liu, L. Mai, *Nano Energy*, 2017, 35, 396-404.
- M. Mao, C. Cui, M. Wu, M. Zhang, T. Gao, X. Fan, J. Chen, T. Wang, J. Ma, C.
 Wang, *Nano Energy*, 2018, 45, 346-352.
- S18 X. Ou, X. Xiong, F. Zheng, C. Yang, Z. Lin, R. Hu, C. Jin, Y. Chen, M. Liu, J. Power Sources, 2016, 325, 410-416.