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1. Crystal structures of energetic materials

The unit cell for each of the EMs used through this work is given in Figure S2.1. Data for literature 
structures are taken from the Cambridge Crystallographic Data Centre (CCDC), corresponding to: 
): -HMX (Ref: OCHTET151), -FOX-7 (Ref: SEDTUQ032), NTO (Ref: QOYJOD063), HNB (Ref: 𝛽 𝛼
HNOBEN4), ABT (Ref: EWEYEL5), HBT (Ref: TIPZAU6), TATB (Ref: TATNBZ7), DNIT (Ref: VIWRAV8), 
MNT (Ref: VITBAC8), GTZ (CSD Deposition 1900007), AGTZ (CSD Deposition 1900008), DGTZ (CSD 
Deposition 1900009), ATZ (Ref: EJIQEU01)



Figure S1.1: Unit cell structure for each EM used in this work. The cell axes are indicated along 
with space group (SG). Atoms are colored according to: White- hydrogen; Grey- carbon; Blue- 
nitrogen; Red- oxygen. 

2. Calculated unit cell parameters

Prior to calculation of the phonon dispersion curves, all structures were relaxed. The resulting, 
relaxed unit cell parameters are given in Table S2.1 and compared to input experimental 
parameters. Note that where applicable, DFT calculations were performed on the primitive unit 
cell structures. All DFT structures are compared to low temperature experimental data, where 
available. 

Table S2.1: Comparison of unit cell parameters from DFT calculations (calc) against experimental 
parameters (exp). The space group (SG) is given for each experimental structure, and remains 
unchanged upon relaxation. For non-primitive cells, the corresponding parameters of the 
primitive cell are also given. The total change in volume (dV) is given for each relaxed structure.

SG a b c 𝛼 𝛽 𝛾 V dV/%

ABTexp Pbca 8.352 6.793 11.614 90 90 90 658.962

ABTcalc 8.354 6.789 11.618 90 90 90 658.931 -0.004%

DNITexp P21/c 9.401 5.492 9.315 90 105.762 90 462.835

DNITcalc 9.413 5.526 9.758 90 105.317 90 489.546 +5.77%

HNBexp C2/c 13.220 9.130 9.680 90 95.500 90 581.490

HNBexp P(C2/c) 9.046 9.046 9.680 62.280 62.280 60.620 581.492

HNBcalc 9.028 9.028 9.771 62.444 62.444 59.981 582.977 +0.26%

MNTexp P21/c 9.528 7.731 8.460 90 112.875 90 574.122

MNTcalc 9.644 7.771 8.612 90 113.203 90 593.209 +3.32%

-HMXexp𝛽 P21/c 6.525 11.024 7.362 90 102.642 90 516.675

-HMXcalc𝛽 6.624 11.256 7.373 90 102.222 90 537.299 +4.00%

HBTexp C2/c 12.401 5.513 9.835 90 115.570 90 606.565

HBTexp P(C2/c) 6.786 6.786 9.835 113.230 113.230 47.940 303.283

HBTcalc 6.706 6.706 9.724 111.837 111.837 49.440 303.075 -0.07%

-FOX7exp𝛼 P21/n 6.934 6.622 11.312 90 90.065 90 519.470

-FOX7calc𝛼 7.089 6.623 11.440 90 91.273 90 530.898 +2.20%

NTOexp P-1 5.123 10.314 17.998 106.610 97.810 90.130 902.060

NTOcalc 5.159 10.461 17.686 107.247 97.777 90.056 902.450 +0.04%

TATBexp P-1 9.010 9.028 6.812 108.580 91.820 119.970 442.524

TATBcalc 9.128 9.142 6.767 109.012 92.097 119.936 448.784 +1.41%

ATZexp P212121  5.090 3.666 18.0741 90 90 90 337.289 

ATZcalc 5.073 3.680 18.067 90 90 90 337.303 +0.004%

GTZexp P21/c 4.730 13.894 8.754 90.0 92.96 90.0 574.485

GTZcalc 4.897 13.699 8.876 90 92.456 90 594.843 +3.54%

AGTZexp C2/c 12.602 8.012 12.778 90.0 94.529 90.0 1286.23

AGTZexp P(C2/c) 7.467 7.467 12.778 93.821 93.821 64.893 643.114

AGTZcalc 7.452 7.452 13.077 95.163 95.163 65.597 657.534 +2.24%

DGTZexp P-1 6.097 7.318 8.094 94.979 97.659 104.058 344.517

DGTZcalc P-1 6.085 7.308 8.236 92.978 98.824 102.677 351.731 +2.09%



3. Vibrational spectra of energetic materials
3.1. Phonon dispersion curves

The vibrational up-pumping model used in this work is based off integration over the 
complete Brillouin zone. The corresponding phonon dispersion curves were generated within 
the framework of Density Functional Perturbation Theory (DFPT) and are provided in Figure 
S3.1. To allow for ease of visualization, these data are provided to a maximum of 600 cm-1. 

Unfortunately, both NTO and HNB exhibit slight instabilities in the calculated dispersion 
curves; their lowest acoustic branch falls below zero at a number of points across the Brillouin 
zone). Noting that neither phase is metastable, it is assumed that these effects are numerical. 
Given the excellent agreement of the calculated INS spectrum (including integration across 
the complete Brillouin zone) against the experimental spectrum, Figure 3 (main text), we do 
not expect these small instabilities to have any major influence on the rest of the vibrational 
structure. 



F
igure S3.1.1: Phonon dispersion curves for EMs used in this work. All curves are generated 
within the framework of DFPT, using the PBE GGA functional. Data are plotted across the high-
symmetry lines as suggested by SeeKPath9, and labelled according to the international tables 
convention. 



3.2. Phonon density of states

Figure S3.2.1: Calculated phonon density of states generated from integration across the first 
Brillouin zone. The values of  are indicated by vertical dotted lines. Gaussian smearing of 5 Ω𝑚𝑎𝑥

cm-1 is applied. 



4. Inelastic neutron scattering spectroscopy convergence
In order to simulate INS spectra of the EMs used in this manuscript, the vibrational spectra 
were averaged over a series of q-point densities, Figure S4.1.1 and S4.1.2. While zone-centre 
(q=0) sampling is sufficient to obtain the correct frequencies, capturing the intensities 
requires a denser modelling grid. In all cases, sampling with density of approximately 0.08 A-

1 yields good overall description of the experimentally determined spectra. 

Figure S4.1.1: INS spectra for -HMX and -FOX-7 at 10 K. The experimental pattern (black 𝛽 𝛼
lines) is shown in comparison to simulated INS spectra (blue lines) at sampling densities of 
the Brillouin zone  only, 0.08 Å−1 and 0.04 Å−1.



Figure S4.1.2: INS spectra for NTO and TATB at 10 K. The experimental pattern (black lines) is 
shown in comparison to simulated INS spectra (blue lines) at three different sampling 
densities of the Brillouin zone. 

5. Numerical example of doorway density calculations



To simplify discussion of the density of doorway states presented in Figure 5 (main text) we 
present here a numerical example, based on two data points, HNB and TATB. We first note that 
the DOS presented in Figure S4.2.1 are normalized to 3N to reflect the total number of states 
present in the corresponding Brillouin zone. 

For TATB, we define the doorway region from  until . An Ω𝑚𝑎𝑥 = 160 𝑐𝑚 ‒ 1 2Ω𝑚𝑎𝑥 = 320 𝑐𝑚 ‒ 1

integration of the TATB DOS over this region gives a total number of 6.07 states, . 𝑔(𝜔)𝐷

Consistent with the method described by Bernstein10, this density is normalized by the total 

number of available states (i.e. = . Finally, the density of states in the 𝑔(𝜔)𝑇 ∫𝑔(𝜔)𝑑𝜔 =  144.00

doorway region is obtained by normalizing to the size of the respective doorway region, 160 cm-1. 
Hence, we obtain the density of doorway states according to

𝐷𝑂𝐷𝑆 =
𝑔(𝜔)𝐷

𝑔(𝜔)𝑇 × Ω𝑚𝑎𝑥
=

6.07
144.0 × 160

= 2.63𝐸 ‒ 4

The same calculation for HMX yields

𝐷𝑂𝐷𝑆 =
𝑔(𝜔)𝐷

𝑔(𝜔)𝑇 × Ω𝑚𝑎𝑥
=

14.07
167.99 × 193

= 4.34𝐸 ‒ 4

The necessary values used to derive data in Figure 5 are given in Table S5.1. To assist visualization, 
all values in the main text are scaled by a factor of .104

Table S5.1: Calculation of doorway density presented in Figure 5 of main text. 

 /cm-1Ω𝑚𝑎𝑥
2Ω𝑚𝑎𝑥

∫
Ω𝑚𝑎𝑥

𝑔(𝜔)𝑑𝜔
∫𝑔(𝜔)𝑑𝜔

ABT 145 11.99904 167.91664
DNIT 145 12.18078 131.91624
HNB 135 20.00002 143.91297
MNT 175 11.96816 167.94535
HMX 193 14.07173 167.99123
HBT 200 10.20427 95.97982
FOX7 185 13.87112 167.99123
NTO 170 22.2286 247.02029
NTO 200 15.42819 247.02029
TATB 160 6.07258 144.00085
ATZ 220 5.28085 107.95298
GTZ 225 2.81791 191.70000
AGTZ 235 6.50151 179.8843
DGTZ 235 5.00528 119.94783



6. The projected phonon density of states, 𝑃(Ω(2))

If one requires inclusion of at least one phonon mode ( ), the two-phonon density of 𝜔 < Ω𝑚𝑎𝑥

states is continuous while  is true of the fundamental structure. A subset of examples Δ𝜔 < Ω𝑚𝑎𝑥

are given in Figure S6.1. Thus, many energies can be achieved than there are fundamental modes 
to accept them. It is therefore necessary to consider up-pumping only from multi-phonon states 
which are resonant with a fundamental band. This is achieved by projecting the  onto , Ω(2) 𝑔(𝜔)
Figure S6.2. Note that in doing so, most of the multi-phonon density is lost. This has significant 
consequence on the calculation of vibrational up-pumping. 

Figure S6.1: Example two-phonon density of states ( ). The values of  are indicated by  Ω(2) Ω𝑚𝑎𝑥

vertical dotted lines. 

Figure S6.2: The full  for ABT (black), alongside the single phonon DOS g(  (orange) and the Ω(2) 𝜔)

projection of  onto the DOS, P( ) (blue).Ω(2) Ω(2)



7. Overtone coupling calculations
7.1. Numerical example of overtone coupling calculations

The calculation of the -order overtone contribution follows from Equation 10 (main 𝑚𝑡ℎ

text),

𝑔(𝜔)(𝑚) = 𝑔(𝜔)/(𝑚 + 1);     𝜔(𝑚) = (𝑚 + 1) ×  𝜔

This leads to generation of a unique multi-phonon density of states for each overtone order. 
An example is shown in Figure S7.1
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Figure 7.1: Overtone density of states. (left) The full overtone multi-phonon density of states 
are shown for (blue) m=1 and (green) m=2. (right) Projection of overtone density of states 
(m=1 and m=2 as blue and green, respectively) onto the fundamental structure. 

To permit scaling between systems, the integral of  is divided by . The 𝑔(𝜔)(1 + 2) ∫𝑔(𝜔)𝑑𝜔

normalized values for each of  and  are given in Table S7.1𝑔(𝜔)(1) 𝑔(𝜔)(2)

Table S7.1: Values of  normalised by  for each of the test systems used 𝑔(𝜔)(𝑚) ∫𝑔(𝜔)𝑑𝜔

in this work. 

𝑔(𝜔)(𝑚)

System m=1 m=2 Total
ABT 4.22 2.91 7.13
DNIT 3.15 2.61 5.76
HNB 4.37 3.90 8.27
MNT 3.16 3.05 6.21
HMX 3.87 2.47 6.34
HBT 3.60 1.55 5.15



FOX7 2.66 3.23 5.89
NTO 2.27 1.94 4.21
TATB 1.72 2.33 4.05
ATZ 1.49 2.62 4.11
GTZ 1.04 2.94 3.98
AGTZ 2.46 4.41 6.87
DGTZ 1.33 3.20 4.53

8. Calculations at higher order coupling 
In order to determine whether increasing the overtone order increases the resolution of 
predicted up-pumping, we calculated the up-pumping from the overtone 1, overtone 1+2, 
and the sum of overtones 1-5, Figure S8.1. It is clear that higher order overtones in fact 
reduce the resolution of prediction.

Figure S8.1: Increasing the overtone order for predicted up-pumping. N=2 includes the first 
overtone, N=3 includes the first and second overtones, and N=6 includes the first five 
overtone contributions. 



9. Vibrational modes of TATB and HNB

Key vibrational modes appear to be wagging and stretching modes of the NO2 moieties. Thus, 
pumping excess energy into these modes should be indicative of sensitivity. These modes sit 
within the doorway region of the highly sensitive HNB molecule, but do not appear within the 
doorway region of the insensitive TATB species, Table S9.1. Thus, their excitation is 
considerably higher in HNB.

Table S9.1: Brillouin zone centre ( ) point vibrational frequencies calculated for TATB and HNB. Γ

Dominant mode assignments are made. Values are shown to a maximum of .External 2Ω𝑚𝑎𝑥

mode character is denoted X. The value of  is indicated by a dark line. No values are given Ω𝑚𝑎𝑥

above .2Ω𝑚𝑎𝑥

TATB
Wavenumber /cm-1

Dominant Mode 
Character

HNB
Wavenumber 

/cm-1

Mode

  28.60 X  23.84 X
  49.91 X  40.41 X
  55.31 X+ring  41.61 X
  61.96 X+ring  43.46 X
  63.11 X+ring  51.21 -NO2 rock + X
  84.31 NO2 rock t  55.02 -NO2 rock + X
  85.58 NO2 rock  60.29 X
  87.25 NO2 rock  67.82 -NO2 rock + X
  93.55 NO2 rock  69.25 -NO2 rock + X
 100.11 X  77.80 -NO2 rock
 102.41 -NO2  78.82 -NO2 wag
 109.27 X  81.91 X
 120.13 X  87.18 X
 122.36 -NH2 rock  87.64 -NO2 rock
 129.14 -NH2 rock  93.92 X
 137.22 -NH2 rock  96.83 X
 139.93 NH2 + NO2 rock  97.41 -NO2 umbrella
 146.11 X 102.75 X
 146.23 X 103.76 X
 155.92 X 105.94 -NO2 rotation
 161.73 X + NO2 rock 107.74 X
 234.80 Umbrella mode 109.23 -NO2 rock + X
 237.03 Umbrella mode 120.95 -NO2 wag



 286.04 -NO2 rock 121.70 -NO2 rock +wag
 286.13 -NO2 rock 123.46 -NO2 rock + X
 287.05 -NO2 rock 127.42 -NO2 wag + X
 287.52 -NO2 rock 132.04 -NO2 rock + X

160.27 -NO2 rock
167.55 -NO2 rock + wag
168.36 NO2

 … NO2 bend + rock
168.82 NO2

 … NO2 bend + rock
169.83 NO2

 … NO2 bend + rock
170.65 NO2

 … NO2 bend + rock
185.60 -NO2 wag + rock
186.47  -NO2 wag
186.78 -NO2 wag
187.22 -NO2 wag
189.17 -NO2 wag
189.29 -NO2 wag
199.89 Ring deformation
202.12  Ring deformation
203.68 Ring deformation
205.44 Ring deformation
253.06 C-NO2 stretch + ring 

stretch
253.51 C-NO2 stretch + ring 

stretch
254.14 C-NO2 stretch + ring 

stretch
254.74 C-NO2 stretch + ring 

stretch
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