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Table S1 Chemical compositions of PC determined by Elemental analysis

Samples Weight (wt%)

C N Q) H

PC 91.5 1.1 2.8 1.0

Figure S1 SEM images of the porous N-doped carbon (denoted PC) derived from

litchi pericarps.
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Figure S2 (a) N, adsorption-desorption isotherms of C (without hierarchical porous
nanostructures) and PC (with hierarchical porous nanostructures), (b) corresponding
pore distribution of above two samples based on a method of Barrett-Joyner-Halenda

(BJH).
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Figure S3 XRD patterns of PC (without SA-Ru or Ru NPs), SA-Ru/Ru NPs/PC (with
both SA-Ru and Ru NPs), and SA-Ru/PC (with only SA-Ru).
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Figure S4 Size distribution of Ru nanoparticles (NPs) on the SA-Ru/Ru NPs/PC.
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Figure S5 (a, b) TEM image of SA-Ru/PC (without Ru NPs but with SA-Ru), (c)
select-area electron diffraction (SAED) images of SA-Ru/PC, (d) STEM-HADDF
images of SA-Ru/PC.
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Figure S6 (a, b, c) TEM images of Ru NPs/PC (without SA-Ru but with Ru NPs), (d)
size distribution of Ru NPs on the Ru NPs/PC.
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Figure S7 Ru 3p XPS spectra of Ru NPs/PC.
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Figure S8 Overpotentials of SA-Ru/PC, SA-Ru/Ru NPs/PC, Ru NPs/PC, and Pt/C-20

at the current density of 10 mA cm2.



Table S2 Comparison of HER activity with recent reported literatures

t tential
Mass loading Curr.en Overpo e.n 1.a Tafel slope
Electrocatalysts (mg cm?) density at certain j (mV dec) Reference
g (mA cm??) (mV)
SA-Ru/Ru 0.4 10 33.0
NPs/PC (2.4 (Ru: 9 6. om?) 20 45.0 31.8 This work
Wt%) oke 100 65.1
Ru/ C3N4/ C 0.2
10 79 N/A 1
(20 wt%) (Ru: 40 pg cm?)
Ru@C,N 0.285 10 17 18 )
(28.7 wt%) (Ru: 82 ug cm?) 20 35.5
10 28
RuCo@NC 0.275 100 718 31 3
1 2
Ru@NC 0.3 0 6
(2 wt%) (Ru: 6 ug cm?) 20 40 36 4
O 100 98
Ru-NC-700 0.2 10 12 14 5
nanowires
Porous Ru 0.36
) 10 83 80 6
nanomaterials (Ru: 360 pg cm2)
RuP,@NPC 1.0 10 52 69 7
' 10 52
Nil.5Col.4P@Ru 0.25 50 105 50 8
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Figure S9 LSV curves of SA-Ru/Ru NPs/PC with and without addition of 10 mM
SCN- to electrolyte
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Figure S10 Hydrogen amount theoretically calculated and experimentally measured

versus time for SA-Ru/Ru NPs/PC at the potential of -0.07 V vs RHE.



Figure S11 TEM and HADDF-STEM images of SA-Ru/Ru NPs/PC after stability
test of 24 h.

Figure S12 TEM images of SA-Ru/Ru NPs/PC (without hierarchical porous

nanostructures).



Figure S14 TEM images of Ru/C;N, (supported on the carbon nitride).
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Figure S15 CV curves for (a) SA-Ru/Ru NPs/PC, (b) SA-Ru/Ru NPs/C, (¢)Ru/GO,
and (d) Ru/C;Ny at different rates (i.e. 0.04, 0.06, 0.08, 0.10, 0.12, and 0.14 V/s)



Figure S16 (a) Side and (b) top view of the configuration for H* intermediates
absorbed on RuN4. Gray atoms, blue atoms, cyan atoms, and white atoms, represent

C, N, Ru, and H elements.
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Figure S17 (a) Side and (b) top view of the configuration for H* intermediates
absorbed on Ru NPs. Gray atoms, blue atoms, cyan atoms, and white atoms, represent

C, N, Ru, and H elements.



Figure S18 (a) Side and (b) top view of the configuration for H* intermediates
absorbed on RuN4/Ru NPs. Gray atoms, blue atoms, cyan atoms, and white atoms,

represent C, N, Ru, and H elements.
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