Efficient piezo-catalytic hydrogen peroxide production from water and oxygen over graphitic carbon nitride

Kefu Wang,^{‡a} Dengkui Shao,^{‡a} Ling Zhang,^{ab} Yuanyi Zhou,^a Haipeng Wang,^a Wenzhong Wang^{*ab}

^a State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050

^b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, P.

R. China

[‡] These authors contributed equally

*Corresponding Author: wzwang@mail.sic.ac.cn

Fig. S1 The absorbance of $KMnO_4$ with different ultrasonic time in g-C₃N₄ suspension.

Fig. S2. TEM images of Au deposited g-C₃N₄ by (a, b) piezo-catalytic process (US-3) and by (c, d) photochemistry process (Xe-C₃N₄).

Fig. S3. (a) XRD, (b) DRS and (c) FTIR of g-C₃N₄ before and after used. (c) BET of pristine g-C₃N₄, Cv-C₃N₄ and Nv-C₃N₄.

Fig. S4. PFM resonant responses of $g-C_3N_4$ for different applied voltages

Catalyst	Dosage of catalyst	Reaction solution	Light	Generating rate of H ₂ O ₂ (µmol /h)	Ref.
TiO ₂	5 mg	5 mL H ₂ O containing 0.2 mL EtOH	280-400 nm 13.8 mW/cm ²	2.5	1
Au-BiVO ₄	50 mg	30 mL H ₂ O	Xe arc lamp (>300 nm)	0.12	2
g-C ₃ N ₄ /BDI	50 mg	30 mL H ₂ O	420–500 nm 131 m/cm ²	12.5	3
Pt-Bi ₂ WO ₆	65 mg	50 mL H ₂ O containing 0.43 mM phenol	150W Xe light 25.2 mW/cm ²	0.5	4
g-C ₃ N ₄ /PDI	50 mg	30 mL H ₂ O	420–500 nm 131 mw/cm ²	1.04	5
K, P, O-C ₃ N ₄	20 mg	40 mL H ₂ O containing 8 mL EtOH (pH=3, by HClO ₄)	726.8 mW (>420nm) and 833 mW (>320nm)/cm ²	10	6
POM-C ₃ N ₄	100 mg	100 mL H ₂ O	300W Xe light (>300nm)	3.5	7
CdS-RGO	50 mg	50 mL H ₂ O (pH=5, by H ₂ SO ₄)	300W Xe light	0.58	8

Table S1. Summary of representative reports for generating H_2O_2 via solar-to-chemical

process

References

- D. Tsukamoto, A. Shiro, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka and T. Hirai, *ACS Catal.*, 2012, 2, 599-603.
- H. Hirakawa, S. Shiota, Y. Shiraishi, H. Sakamoto, S. Ichikawa and T. Hirai, ACS Catal., 2016, 6, 4976-4982.
- Y. Kofuji, S. Ohkita, Y. Shiraishi, H. Sakamoto, S. Tanaka, S. Ichikawa and T. Hirai, ACS Catal., 2016, 6, 7021-7029.
- 4. J. Sheng, X. Li and Y. Xu, ACS Catal., 2014, 4, 732-737.
- Y. Shiraishi, S. Kanazawa, Y. Kofuji, H. Sakamoto, S. Ichikawa, S. Tanaka and T. Hirai, *Angew. Chem. Int. Ed.*, 2014, 53, 13454-13459.
- G.-h. Moon, M. Fujitsuka, S. Kim, T. Majima, X. Wang and W. Choi, *ACS Catal.*, 2017, 7, 2886-2895.
- 7. S. Zhao, X. Zhao, H. Zhang, J. Li and Y. Zhu, *Nano Energy*, 2017, **35**, 405-414.
- 8. S. Thakur, T. Kshetri, N. H. Kim and J. H. Lee, J. Catal., 2017, 345, 78-86.