Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information

A synergetic strategy for advanced electrode with Fe₃O₄ embedded in 3D Ndoped porous graphene framework and strong adhesive binder for ultralong cycle lifespan Lithium-/Potassium-Ion batteries

Ying Liu^{a†}, Donglin He^{a†}, Qiwei Tan^a, Qi Wan^b, Kun Han^a, Zhiwei Liu^a, Ping Li^{a*}, Fuqiang An^a and Xuanhui Qu^{a*}

^a Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China

^b School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.

Email: <u>ustbliping@126.com</u> (P. L.); <u>quxh@ustb.edu.cn</u> (Prof. Xuanhui Qu)

Fig. S1 SEM image of (a) pure 3DNPGF and (c) Fe_3O_4 . TEM image of (b) pure 3DNPGF and (d) Fe_3O_4 .

Fig. S2 TEM images of the $Fe_3O_4/3DNPGF$.

Fig. S3 XRD profile of (a) Fe_3O_4 , and (b) pure 3DNPGF.

Fig. S4 Raman spectrum of pure 3DNPGF.

Fig. S5 XPS full survey profile of Fe₃O₄/3DNPGF.

Fig. S6 Nitrogen adsorption-desorption isotherms and pore size distributions of (a, b)Fe₃O₄, and (c, d) pure 3DNPGF.

Fig. S7 EIS of the PVDF-Fe₃O₄/3DNPGF, PVDF-Fe₃O₄, and PVDF-pure 3DNPGF after 100 cycles in LIBs.

Fig. S8 The comparation of a nonporous, and b porous $Fe_3O_4/3D$ graphene framework.

Fig. S9 The analysis of capacitive behavior for the Fe₃O₄/3DNPGF in LIBs. (a) CV profiles of the Fe₃O₄/3DNPGF at different scan rates ($0.1 \sim 5.0 \text{ mV s}^{-1}$) between 0.01 to 3.0 V (vs Li⁺/Li). (b) Determination of the b-value using the relationship between peak current and sweep rate. (c) Contribution ratio of the capacitive and diffusion-controlled charge versus scan rate, and (d) Purple curve shows the CV curve of the Fe₃O₄/3DNPGF and the shaded region indicates the capacitive contribution, measured at 1 mV s⁻¹.

Fig. S10 SEM image of the PAA-Fe₃O₄/3DNPGF electrode after cycling in LIBs.

Fig. S11 Cyclic voltammetry curves of $Fe_3O_4/3DNPGF$ in the potential range of 0.01 to 3.0 V (vs. K/K⁺) at a scan rate of 0.1 mV s⁻¹.

Fig. S12 Nyquist plots of EIS for the PAA-Fe $_3O_4/3DNPGF$, PVDF-Fe $_3O_4/3DNPGF$,

Fe₃O₄, and pure 3DNPGF after 100 cycles in KIBs.

Fig. S13 XRD profile of Fe₃O₄/3DNPGF annealed at 600, 700, and 800 °C.

Fig. S14 (a-c) SEM images. (d-f) TEM images. (g-i) AFM images of $Fe_3O_4/3DNPGF$ annealed at 600, 700, and 800 °C, respectively.

Fig. S15 Lithium/potassium storage properties of the PAA-Fe₃O₄/3DNPGF annealed at 600, 700, and 800 °C. (a, c) Cycling performance and Nyquist plots of EIS at 10 A g^{-1} in LIBs. (b, d) Cycling performance and Nyquist plots of EIS at 1 A g^{-1} in KIBs.

The phase purity of the 600-Fe₃O₄/3DNPGF and 800-Fe₃O₄/3DNPGF samples are comparatively presented in Fig.S13, on which Fe₃O₄ (JCPDS: 99-0073) is identified as the major phase. However, the 600-Fe₃O₄/3DNPGF demonstrates lower crystallinity compared to the Fe₃O₄/3DNPGF (annealed at 700 °C), whereas a few impurity peaks are observed on the XRD profile of the 800-Fe₃O₄/3DNPGF sample.

Fig. S14 compares the nanostructures of the 600-Fe₃O₄/3DNPGF, Fe₃O₄/3DNPGF, 800-Fe₃O₄/3DNPGF. Particularly, the 600-Fe₃O₄/3DNPGF are featured with thicker graphene nanosheets compared to that of the Fe₃O₄/3DNPGF and 800-Fe₃O₄/3DNPGF under the TEM observation, as further confirmed by AFM results (Fig. S14g-i). The thicker graphene nanosheets would result in reduced active surface area, and hinder ion transportation to some extent, ¹ thus deteriorating electrochemical performance of the material. Besides, when annealed at 800 °C, the severe particle aggregation effect at

higher temperature results in the production of larger Fe_3O_4 nanoparticles decorated on the 3DNPGF matrix, as displayed in Fig. S14f. The larger Fe_3O_4 particles possess weaker tolerance toward the mechanical stress arising from the serious volume fluctuations upon cycling, leading to inferior structural robustness and poor battery performance.²

The lithium/potassium storage properties of the PAA-Fe₃O₄/3DNPGF at 600, 700, and 800 °C were further investigated by EIS and galvanostatic charge-discharge tests (Fig. S15). It is demonstrated that the Fe₃O₄/3DNPGF exhibits better battery performance in both LIBs and KIBs than the 600-Fe₃O₄/3DNPGF and 800-Fe₃O₄/3DNPGF electrodes. Benefiting from the structure-induced merits, the Fe₃O₄/3DNPGF at 700 °C retains a superb reversible capacity of 400.5 mAh g⁻¹ after 200 cycles at 10 A g⁻¹ for lithium storage. As for KIBs, the Fe₃O₄/3DNPGF electrode could still maintain a high capacity of 161.6 mAh g⁻¹ after 200 cycles at 1 A g⁻¹ and display a tiny capacity drop rate of 0.035% per cycle. Moreover, the EIS profiles reveal that the Fe₃O₄/3DNPGF electrode displays the lowest charge transfer resistance compared to the 600-Fe₃O₄/3DNPGF and 800-Fe₃O₄/3DNPGF electrodes (Fig. S15 c and d), implying the superior electrochemical kinetics of the Fe₃O₄/3DNPGF.

S ^a (nm)	P ^b (%)
5.0-9.3	12.90
9.3-13.6	21.77
13.6-17.9	20.16
17.9-22.2	15.32
22.2-26.5	12.90
26.5-30.8	8.06
30.8-35.1	4.03
35.1-39.4	1.61
39.4-43.7	2.42
43.7-48.0	0.81

Table S1 An accurate Fe_3O_4 nanoparticles distribution in $Fe_3O_4/3DNPGF$

^a Particle size of the $Fe_3O_4/3DNPGF$

^b Proportion of the Fe₃O₄ nanoparticles

Table S2The ICP of Fe₃O₄/3DNPGF

Element	Content (wt%)
Fe	55.5
С	33.4
0	9.72
Ν	1.05

N species	Content (%)		
Graphitic N	40.8		
Pyrrolic N	37.1		
Pyridinic N	22.1		

Table S3 The content of the N species in $Fe_3O_4/3DNPGF$

Table

Pore

Sample	S _{BET} ^a (m ² g ⁻¹)	D _{average} b (nm)	V _{Total} c (cm ³ g ⁻¹)	V _{Mesoporou} d (cm ³ g ⁻¹)	P _{Mesoporou} e
Fe ₃ O ₄ /3DNPGF	160.27	5.3508	0.210710	0.201941	95.84%
Pure 3DNPGF	446.6	5.8723	0.660622	0.620937	94%
Fe ₃ O ₄	14.91	7.4398	0.031446	0.030066	95.6%

structure of Fe₃O₄/NPGF, Fe₃O₄ and pure 3DNPGF

^a Specific surface area calculated to BET (Brunauer-Emmett-Teller) method.

^b Adsorption average pore diameter.

^c Total pore volume.

^d Mesopores volume.

^e Percentage of mesopores.

	Materials description	Cycling data ^{a)}	Capacity	Rate capability ^{b)}	Ref
		000/100th/0.2	retention		
LIBs	Fe ₃ O ₄ /3DNPGF	377 1/5000 th /10	98.5% 81.4%	168/15	This work
	Graphene-wrapped Fe ₃ O ₄ - graphene nanoribbons (G- Fe ₃ O ₄ -GNRs)	708/300 th /0.4	88.5%	~525/1	3
	Mesoporous Fe ₃ O ₄ nanospheres and graphene composites (Fe ₃ O ₄ -Ns/G)	~445/600 th /2		440/2	4
	Fe ₃ O ₄ /N-doped graphene nanocomposites	929/70 th /0.1	84.5%	491/4	5
	Graphene-encapsulated hollow Fe ₃ O ₄ nanoparticle (G-HM)	900/50 th /0.1	92%	580/0.8	6
	Graphene-Fe ₃ O ₄ @carbon composite (G-Fe ₃ O ₄ @C)	860/100 th /0.1	90%	~460/2	7
	Fe ₃ O ₄ cluster microspheres/graphene aerogels composite (Fe ₃ O ₄ /GAs)	650/500 th /1	89.9%	603.5/2	8
	Fe ₃ O ₄ @graphene aerogel (Fe ₃ O ₄ @GA)	941.5/100 th /0.1	57.8%	223.9/2	9
	Fe ₃ O ₄ /3DNPGF	154.6/500 th /1	76.4%	97.2/2	This work
	Nanoporous Sb (NP-Sb)	318/50 th /0.1	62.35%	265/0.5	10
	MoSe ₂ /N-doped Carbon (MoSe ₂ /N-C)	258.02/300 th /0.1		196/1	11
KIBs	Red phosphorus@carbon nanosheet (red P@CN)	665/40 th /0.1		323.7/2	12
	Graphitic carbon nanocage	195/100 th /0.2C (1C=0.279)		175/35C	13
	N-doped porous Carbon	342.8/500 th /0.1	90.9%	185/10	14

 Table S5 Recent progress on electrochemical performance of anodes for LIBs and

 KIBs

Yolk-shell FeS2@C	162/1000 th /1		203/10	15
Co ₃ [Co(CN) ₆] ₂	282/200 th /0.5	82%	221/1	16
CoSe2 threaded by N- doped carbon nanotubes	253/100 th /0.2	~85.3%	173/2	17

^{a)} The cycling data are summarized as capacity/corresponding cycle number/corresponding current density. The unit of capacity and current density is mAh g^{-1} and mA g^{-1} , respectively.

^{b)} The rate capability is summarized as capacity/corresponding current density. The unit of capacity and current density is mAh g^{-1} and A g^{-1} , respectively.

References

- 1. Y. Jiang, Z.-J. Jiang, L. Yang, S. Cheng and M. Liu, J. Mater. Chem. A, 2015, 3, 11847-11856.
- G. Chen, M. Zhou, J. Catanach, T. Liaw, L. Fei, S. Deng and H. Luo, *Nano Energy*, 2014, 8, 126-132.
- 3. L. Li, A. Kovalchuk, H. Fei, Z. Peng, Y. Li, N. D. Kim, C. Xiang, Y. Yang, G. Ruan and J. M. Tour, *Adv. Energy Mater.*, 2015, **5**.
- 4. Y. Dong, K. C. Yung, R. Ma, X. Yang, Y.-S. Chui, J.-M. Lee and J. A. Zapien, *Carbon*, 2015, **86**, 310-317.
- 5. J. Jiao, W. Qiu, J. Tang, L. Chen and L. Jing, *Nano Research*, 2016, 9, 1256-1266.
- 6. D. Chen, G. Ji, Y. Ma, J. Y. Lee and J. Lu, *ACS Appl. Mater. Interfaces*, 2011, **3**, 3078-3083.
- L. Zhao, M. Gao, W. Yue, Y. Jiang, Y. Wang, Y. Ren and F. Hu, ACS Appl. Mater. Interfaces, 2015, 7, 9709-9715.
- 8. S. Zhou, Y. Zhou, W. Jiang, H. Guo, Z. Wang and X. Li, *Appl. Surf. Sci.*, 2018, 439, 927-933.
- Y. Suo, Q.-Q. Zhao, J.-K. Meng, J. Li, X.-C. Zheng, X.-X. Guan, Y.-S. Liu and J.-M. Zhang, Mater. Lett., 2016, 174, 36-39.
- 10. Y. An, Y. Tian, L. Ci, S. Xiong, J. Feng and Y. Qian, Acs Nano, 2018, 12, 12932-12940.
- J. Ge, L. Fan, J. Wang, Q. Zhang, Z. Liu, E. Zhang, Q. Liu, X. Yu and B. Lu, *Adv. Energy Mater.*, 2018, 8, 1801477.
- 12. P. Xiong, P. Bai, S. Tu, M. Cheng, J. Zhang, J. Sun and Y. Xu, Small, 2018, 14, 1802140.
- B. Cao, Q. Zhang, H. Liu, B. Xu, S. Zhang, T. Zhou, J. Mao, W. K. Pang, Z. Guo, A. Li, J. Zhou, X. Chen and H. Song, *Adv. Energy Mater.*, 2018, 8, 1801149.
- D. Li, X. Ren, Q. Ai, Q. Sun, L. Zhu, Y. Liu, Z. Liang, R. Peng, P. Si, J. Lou, J. Feng and L. Ci, *Adv. Energy Mater.*, 2018, 8, 1802386.
- Y. Zhao, J. Zhu, S. J. H. Ong, Q. Yao, X. Shi, K. Hou, Z. J. Xu and L. Guan, *Adv. Energy Mater.*, 2018, 8, 1802565.
- 16. L. Deng, Z. Yang, L. Tan, L. Zeng, Y. Zhu and L. Guo, *Adv. Mater.*, 2018, **30**, 1802510.
- 17. Q. Yu, B. Jiang, J. Hu, C.-Y. Lao, Y. Gao, P. Li, Z. Liu, G. Suo, D. He, W. Wang and G. Yin, *Advanced Science*, 2018, **5**, 1800782.