

Supporting information

Fig. S1 Fitted X-ray powder diffraction profiles based on *Pbcm** for (a)AN, (b)ANT10, (c)SANT1, (d)SANT2, (e)SANT3 and (f)SANT4 ceramics, showing observed (points), fitted (line) and difference (lower) profiles.

^{*} It cannot distinguish between Pbcm and $Pb2_1m$ space group, Pbcm model may provide a better description of the crystallographic structure.¹

Fig. S2 (a) general structural characteristics of AN system, the average distance of (b) |B-O6|, |B-O7|, (c) |B-O6'|, |B-O7'|, and (d) |B-O4|, |B-O5|.

Fig. 2(a) displays some main structural characteristics, including the displacement of Ag1 and B-site cations, as well as the locations of O4, O5, O6, O7, O6' and O7' in [BO6] octahedron. The IB-O6|, IB-O7|, IB-O6'| and IB-O7'| [Fig. S2(b) and (c)] in the horizontal plane decrease after Ta and Sm modification due to suppressed cell volume, which is consistent with decreased lattice parameters a and b. A similar tendency is also observed for IB-O4| and IB-O5| in the vertical axis, as shown in Fig. 2(d), which is associated with the decreased B-site displacement. Although the calculated lattice parameter c increases after Sm modification, the decreased B-site displacement from the center of [BO₆] octahedron shortens the distance between B and O in the vertical axis, which is further verified by enhanced O4-B-O5 angle degree Fig. S3. The stronger B-O band will constrain oxygen in [BO₆] octahedron and inhibit octahedral rotation.²⁻⁴

Fig. S3 the angle degrees of O4-B-O5, O6-B-O7 and O6'-B-O7'.

Fig. S3 shows the angle degrees, i.e. $\angle |O6\text{-B-O7}|$, $\angle |O6^{\circ}\text{-B-O7}'|$ in the horizontal axis and $\angle |O4\text{-B-O5}|$ in the vertical axis. All angles are found to increase, related to the weakened B-site ion displacement. The enhanced angle degrees indicates that $[BO_6]$ octahedron exhibits lower distortion after Sm and Ta modification.² In addition, the enhancement of $\angle |O4\text{-B-O5}|$ is more significant compared with $\angle |O6\text{-B-O7}|$ and $\angle |O6^{\circ}\text{-B-O7}'|$, indicating that decreased B-site ion displacement can make a greater impact on B-O band in the vertical axis than ones in the horizontal axis.

Fig. S4 XPS spectra of (a) Ag3d, (b) Sm3d, (c)Nb3d and (d) Ta4f core level for the SANT*x* ceramics with selected compositions.

Fig. S5 Estimated grain size distribution for (a)AN, (b)ANT10, (C)SANT1, (d)SANT2, (e)SANT3 and (f)SANT4 ceramics.

Specimens	AN	ANT10	SANT1	SANT2	SANT3	SANT4
Space group	Pbcm	Pbcm	Pbcm	Pbcm	Pbcm	Pbcm
Unit cell	a= 5.5605(1) Å	a= 5.5475(2) Å	a=5.5466(1) Å	a= 5.5442 (1) Å	a= 5.5436(1) Å	a= 5.539(1) Å
dimensions	b=5.6141(2) Å	b=5.6013(2) Å	b=5.6004(1) Å	b=5.599(2) Å	b=5.596(1) Å	b=5.5893(2) Å
	c=15.6696(5) Å	c=15.6729(5) Å	c=15.6804(4) Å	c=15.685(5) Å	c=15.6867(5) Å	c=15.689(4) Å
Volume	489.16(2) Å ³	487.41(1) Å ³	487.085(3) Å ³	486.863(3) Å ³	486.634(3) Å ³	485.785(2) Å ³
Density (fitted)	6.767 g/cm ³	6.879 g/cm ³	6.866 g/cm ³	6.861 g/cm ³	6.855 g/cm ³	6.843 g/cm ³
Refining	R _{wp} =0.0688	$R_{wp} = 0.0742$	$R_{\rm wp}$ =0.0674	$R_{wp} = 0.0786$	$R_{\rm wp}$ =0.0778	<i>R</i> _{wp} =0.0768
parameters	<i>R</i> p=0.0513	<i>R</i> p=0.0568	<i>R</i> p=0.049	<i>R</i> p=0.0568	<i>R</i> p=0.0558	<i>R</i> p=0.0552
	χ ² =1.351	χ ² =1.572	χ ² =1.288	χ ² =1.785	χ ² =1.731	χ ² =1.68

 Table S1 Crystal and refined parameters for the as-prepared samples

Table S2 Refined results of atomic coordinates for (a) AN, (b) ANT10 and (c) $\label{eq:and_stable}$

SANT2 ceramics based on Pbcm space group

1	>
14	٦١.
16	11
· ·	· /

Atom	Site	x	У	Z	Occ.	$U_{\rm ios}$ (Å ²)
Ag1	4d	0.7546(3)	0.23634(1)	0.75	1	0.0226(5)
Ag2	4 <i>c</i>	0.7492(3)	0.25	0.5	1	0.0226(5)
Nb	8 <i>e</i>	0.7484(1)	0.729(1)	0.6254(2)	1	0.0118(0)
01	4d	0.719(08)	0.77	0.75	1	0.037(3)
O2	4 <i>c</i>	0.796(1)	0.75	0.5	1	0.037(3)
O3	8 <i>e</i>	0.454(1)	0.547(2)	0.612(3)	1	0.037(3)
O4	8e	0.992(2)	0.509(3)	0.639(1)	1	0.037(3)

(b)

(0)						
Atom	Site	x	У	Z	Occ.	$U_{\rm ios}({\rm \AA}^2)$
Agl	4d	0.7464(4)	0.2389(1)	0.75	1	0.047(3)
Ag2	4 <i>c</i>	0.7398(03)	0.25	0.5	1	0.047(3)
Nb/Ta	8 <i>e</i>	0.75374(2)	0.73(01)	0.6267(2)	1	0.0408(2)
O1	4d	0.7174(02)	0.7444(1)	0.75	1	0.053(5)
O2	4 <i>c</i>	0.804(03)	0.75	0.5	1	0.053(5)
O3	8 <i>e</i>	0.4725(4)	0.4632(2)	0.6093(3)	1	0.053(5)
O4	8e	1.001(2)	0.4441(5)	0.6493(5)	1	0.053(5)

(c)

Atom	Site	x	У	Z	Occ.	$U_{\rm ios}({\rm \AA}^2)$
Ag/Sm1	4 <i>d</i>	0.7516(2)	0.2439(4)	0.75	1	0.086(2)
Ag2	4c	0.7426(4)	0.25	0.5	1	0.086(2)
Nb/Ta	8 <i>e</i>	0.747(04)	0.7359(05)	0.624(4)	1	0.036(2)
01	4d	0.7227(2)	0.746(1)	0.75	1	0.033(2)
O2	4c	0.83(03)	0.75	0.5	1	0.033(2)
O3	8 <i>e</i>	0.517(1)	0.539(3)	0.586(2)	1	0.033(2)
O4	8 <i>e</i>	1.0568(4)	0.446(06)	0.6178(5)	1	0.033(2)

References

- 1. Y. Tian, L. Jin, H. F. Zhang, Z. Xu, X. Y. Wei, G. Viola, I. Abrahams and H. X. Yan, *J. Mater. Chem. A*, 2017, **5**, 17525-17531.
- I. Levin, V. Krayzman, J. C. Woicik, J. Karapetrova, T. Proffen, M. G. Tucker and I. M. Reaney, *Physi. Rev. B*, 2009, **79**, 104113.
- J. Frantti, S. Ivanov, S. Eriksson, H. Rundlo[°]f, V. Lantto, J. Lappalainen, and M. Kakihana, Phys. Rev. B, 2002, 66, 064108.
- I. Levin, J. C. Woicik, A. Llobet, M. G. Tucker, V. Krayzman, J. Pokorny and I. M. Reaney, *Chem. Mater.*, 2010, 22, 4987-4995.