## **Supporting Information**

Liye Gao,<sup>1,†</sup> Feiteng Wang,<sup>2,†</sup> Ming-an Yu,<sup>1</sup> Fenfei Wei,<sup>1</sup> Jiamin Qi,<sup>1</sup> Sen Lin,<sup>1,\*</sup> and

Daigian Xie<sup>2,\*</sup>

<sup>1</sup>State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China

<sup>2</sup>Institute of Theoretical and Computational Chemistry, Key Laboratory of

Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing

University, Nanjing 210023, China.

†These authors contributed equally to this work.

<sup>\*</sup>Corresponding author. Email: slin@fzu.edu.cn and dqxie@nju.edu.cn

Table S1. Calculated vibrational frequencies, zero point energies and entropy of different adsorption species, where the \* denotes the adsorption site. Note that N=N and N=N represent the side-on and end-on adsorption configurations, respectively.

| Adsorption                | $E_{ m ZPE}$ | TS   |
|---------------------------|--------------|------|
| Species                   | (eV)         | (eV) |
| $\overline{\hspace{1cm}}$ | 0.27         | 0.40 |
| $N_2$                     | 0.15         | 0.59 |
| *N≡*N                     | 0.20         | 0.13 |
| *N=*NH                    | 0.50         | 0.12 |
| $*N-*NH_2$                | 0.84         | 0.09 |
| *NH-*NH <sub>2</sub>      | 1.12         | 0.15 |
| $*NH_2-*NH_2$             | 1.47         | 0.12 |
| $*NH_2-*NH_3$             | 1.68         | 0.18 |
| *N                        | 0.09         | 0.06 |
| *NH                       | 0.35         | 0.10 |
| $*\mathrm{NH}_2$          | 0.67         | 0.12 |
| $*NH_3$                   | 1.03         | 0.16 |
| *N≡N                      | 0.20         | 0.18 |
| *N=NH                     | 0.46         | 0.20 |
| *NH-NH                    | 0.81         | 020  |
| *NH-NH <sub>2</sub>       | 1.14         | 0.21 |
| $*NH_2-NH_2$              | 1.49         | 0.21 |
| *N-NH <sub>2</sub>        | 0.81         | 0.20 |
| $NH_3$                    | 0.89         | 0.60 |

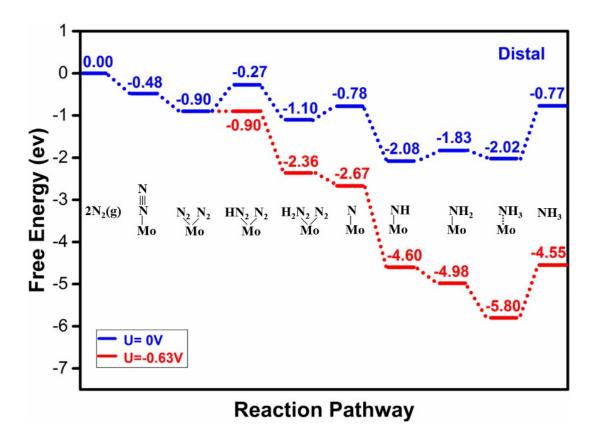



Figure S1. Calculated free energy diagrams for NRR on Mo-PTA through distal mechanism when two  $N_2^{\ast}$  are coadsorbed in the reaction state at different applied potentials.

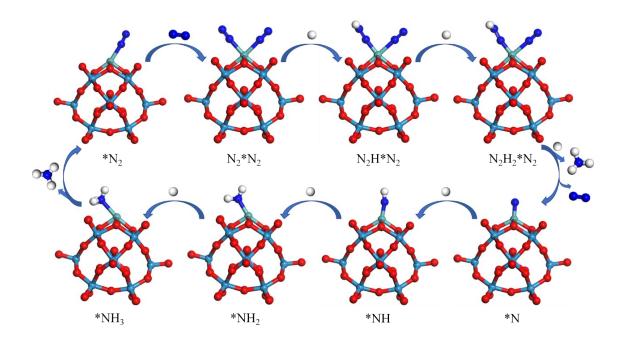



Figure S2. The optimized structures of the intermediates on Mo-PTA following the distal mechanism when two nitrogen molecules are coadsorbed in the reaction state.

Color scheme: P, pink; O, red; W, blue; Mo, cyan; N, navy blue; and H, white.

For the coadsortpion of \*N<sub>2</sub> and \*H, when N<sub>2</sub> firstly adsorbed on Mo-PTA, the  $\Delta G$  of second H adsorption is computed by  $\Delta G = (E_{\text{H*N2}} - E_{\text{*N2}} - 1/2E_{\text{H2}}) + (E_{\text{H*N2}} - E_{\text{*N2}} - 1/2E_{\text{H2}}) + (E_{\text{H*N2}} - E_{\text{*N2}} - 1/2E_{\text{H2}})$ .

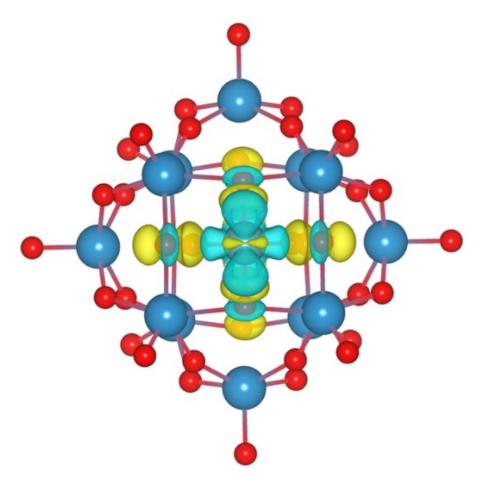



Figure S3. Charge differential density Of Mo-PTA. Isosurface levels is 0.008 e Å<sup>-3</sup>, and charge density difference is computed as  $\rho(\text{Mo-PTA}) - \rho(\text{PTA}) - \rho(\text{Mo})$ . Cyan and yellow represent charge depletion and accumulation, respectively