Structural and electronic properties of multifunctional carbon composites of organometal halide perovskite

Sylwia Klejna*a

^a AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, al. A. Mickiewicza 30, 30-059 Krakow, Poland.

* E-mail: sylwia.klejna@agh.edu.pl

Table S1. Structural and energetic properties of composites.

	Graphene/ MAPbl ₃	GO/ MAPbl ₃	C ₆₀ / MAPbI ₃	C ₆₀ (OH) ₂₄ / MAPbI ₃
E _{ads} [eV]	- 0.980	- 0.806	- 0.860	- 2.136
d _{eq} [Å]	3.77	2.51	(d _{Pb-(C-C)}) 3.00	(d _{Pb-O}) 2.77

Adsorption energies (E_{ads}) and equivalent distance (d_{eq}) computed with PBE-D3 for PbI₂-rich MAPbI₃ (001) surface modified with graphene, graphene oxide, C_{60} and C_{60} (OH)₂₄.

Table S2. Density of states analysis.

	Bulk	Slab MAPbl ₃	Graphen	GO	C ₆₀	C ₆₀ (OH) ₂₄
	MAPbl ₃		е			
Eg ^{pure} [eV]	1.74/2.27	0.60/1.08	0.00/0.00	2.28/3.83	1.64/2.25	2.30/3.83
PBE-D3/HSE06-		(1×1)				
D3		0.62/1.10				
		(2×2)				
Eg ^{composite} [eV]	-	_	0.00/0.00	0.92/1.45	0.66/1.14	0.84/1.34
PBE-D3/HSE06-						
D3						
VBO [eV]	-	_	- 1.01	- 0.10	0.34	0.72
PBE-D3						

DFT band gap energies computed for pure components (E_g^{pure}) and composite structures ($E_g^{composite}$) according to PBE and HSE06 methods. Valance band offset (VBO) determined from DOS analysis according to PBE-D3 method.

Figure S1 Isosurfaces of band decomposed charge density corresponding to valance band maximum (VBM) and conduction band minimum (CBM) according to PBE-D3 for

Colour code: Pb in green, I in violet, C in dark grey, N in blue, H in cyan, O in red.

Figure S2 Top and side view on isosurfaces of electron charge density difference according to PBE-D3 for

a) graphene/ MAPbI₃, **b)** GO/ MAPbI₃, **c)** C₆₀/ MAPbI₃ and **d)** C₆₀(OH)₂₄/ MAPbI₃ interfaces.

Dark grey (yellow) corresponds to electron charge accumulation (depletion). Colour code: Pb in green, I in violet, C in dark grey, N in blue, H in cyan, O in red.

Table S3. Charge density analysis.

	Graphene/ MAPbl ₃	GO/ MAPbl ₃	C ₆₀ / MAPbl ₃	C ₆₀ (OH) ₂₄ / MAPbI ₃
Q _{Bader} [e]	0.004	0.101	0.000	0.201
μ(z) [D]	- 1.42	1.58	0.83	- 0.34
<i>V</i> (z) [eV]	- 0.29	0.31	0.15	- 0.08

Charge density analysis according to PBE-D3 of graphene/ MAPbI₃, GO/ MAPbI₃, C_{60} / MAPbI₃ and C_{60} (OH)₂₄/ MAPbI₃ interfaces: Bader charges (Q_{Bader}) – positive value corresponds to the

electron charge transfer from MAPbI₃ to carbon nanostructure; interface dipole moment ($\mu(z)$); interface electrostatic potential energy (V(z)).

Figure S3 Planar avaraged electrostatic (Hartree) potential computed with PBE-D3 for

Fermi energy is set to 0 eV.

	MAPbl ₃	Graphene	GO	C ₆₀	C ₆₀ (OH) ₂₄
	_	(1×1)	(1×1)	(2×2)	(2×2)
IE ^{pure} [eV]	5.89 (1×1)	4.20	5.87	5.84	6.17
	5.73 (2×2)				
IE ^{composite} [eV]	-	4.45	6.38	5.67	5.57
φ ^{pure} [eV]	5.59 (1×1)	4.20	5.04	5.35	5.72
	5.32 (2×2)				
φ ^{composite} [eV]	_	4.45	5.94	5.41	5.14
-					
Δφ [eV]	-	- 1.14	0.35	0.09	- 0.18
CBO [eV]		0.00	- 2.48	- 0.16	- 0.24

Table S4. Local electrostatic (Hartree) potential analysis.

Ionization energies (IE^{pure}, IE^{composite}), work functions ($φ^{pure}$, $φ^{composite}$) and work function differences (Δφ) computed from PBE-D3 local electrostatic (Hartree) potential analysis for pure components and composites of graphene/ MAPbI₃, GO/ MAPbI₃, C₆₀/ MAPbI₃ and C₆₀(OH)₂₄/ MAPbI₃. The conduction band offsets (CBO) were computed as the difference in electron affinities (EAs) of heterostructure components. EAs were evaluated with the use of HSE06-D3 E_g for MAPbI₃, graphene and GO, while PBE-D3 E_g for C₆₀ and C₆₀(OH)₂₄.