Defect-engineered vanadium trioxide nanofiber bundle@graphene hybrids for high-

performance all-vanadate Na-ion and K-ion full batteries

Zhongqiu Tong,^{ab} Rui Yang,^{ab} Shilin Wu,^{bc} Dong Shen,^{ab} Tianpeng Jiao,^{bc} Kaili Zhang,^d

Wenjun Zhang, bc Chun-Sing Lee* ab

Fig. S1 SEM image (a) and V $2p_{3/2}$ XPS data (b) of VO_x sample.

Fig. S2 HRTEM image of V₂O_{3-x} sample.

Fig. S3 (a) XPS data of V_2O_{3-x} @rGO and V_2O_{3-x} samples. (b) V $2p_{3/2}$ XPS data of V_2O_{3-x} . (c) N 1s XPS spectra of V_2O_{3-x} @rGO sample.

Fig. S4 (a) Nitrogen adsorption/desorption isotherms of V_2O_{3-x} and $V_2O_{3-x}@rGO$. (b) TGA data of the $V_2O_{3-x}@rGO$ in air.

Fig. S5 XRD patterns of vanadium oxide samples annealed at 550 $^{\rm o}C$ for 5 h in Ar/H $_2$ and at 600 $^{\rm o}C$ for 5 h in N $_2$.

Fig. S6 Na-ion insertion/release redox performance of the V₂O_{3-x}@rGO. CVs of the V₂O_{3-x}@rGO electrode at the scan rates of 0.1 mV s⁻¹ (a) and various scan rates (b). (c) CV curve of the V₂O_{3-x}@rGO electrode with separation between total current and surface capacitive current (shaded regions) at 0.2 mV s⁻¹. The current is quantitatively deconvoluted based on equation: $i(V) = k_1v + k_2v^{1/2}$, where i(V) is the measured current at a fixed potential (V) under a certain sweep rate, k_1 and k_2 are adjustable values.

Fig. S7 Cycling performance at 200 mA g^{-1} of V_2O_{3-x} @rGO Na-ion half cell.

Fig. S8 CVs of the V_2O_{3-x} @rGO K storage anode at various scan rates.

Fig. S9 K-ion insertion/extraction performance of V_2O_{3-x} @rGO K-ion half cells. (a) Rate curves of the V_2O_{3-x} @rGO electrode at various current densities. (b,c) Cycling performance at 25 and 200 mA g⁻¹, respectively.

Fig. S10 *Ex situ* XRD patterns obtained at various states during the first discharge/charge cycle of V_2O_{3-x} electrodes for Na-ion (a) and K-ion (b) storage. Given the strength of XRD peaks of V_2O_{3-x} sample was weak, electrodes for *Ex situ* XRD were prepared by mixing the V_2O_{3-x} and PVDF without super P.

Fig. S11 XPS studies of the V₂O_{3-x}@rGO Na-ion anodes. (a) Voltage profiles of the black Nb₂O_{5-x}@rGO nanosheets in different stages of discharge/charge at which the samples were taken for ex situ XPS test. (b,c,d) V $2p_{3/2}$ peaks at the initial 2.5 V, fully discharged 0.01 V, and fully charged 2.5 V states, respectively.

Fig. S12 XPS studies of the V₂O_{3-x}@rGO K-ion anodes. (a) Voltage profiles of the black Nb₂O_{5-x}@rGO nanosheets in different stages of discharge/charge at which the samples were taken for ex situ XPS test. (b,c,d,e,f) V $2p_{3/2}$ peaks at the initial 2.5 V, discharged 0.9 V, fully discharged 0.01 V, charged 1 V, and fully charged 2.5 V states, respectively.

Fig. S13 Physical characterization about the NaVO@rGO and KVO@rGO cathodes. (a,b,c,d) SEM images of KVO, NaVO, KVO@rGO, and NaVO@rGO samples, respectively. (e,f,g,h) XRD patterns, Raman spectra, nitrogen adsorption/desorption isotherms, and TGA curves of KVO@rGO, and NaVO@rGO samples, respectively.

Fig. S14 (a,b) First five discharge/charge curves at 25 mA g⁻¹ and rate performance of NaVO@rGO electrodes, respectively. (c,d) First five discharge/charge curves at 25 mA g⁻¹ and rate performance of KVO@rGO electrodes, respectively.

Fig. S15 (a,b,c) First five discharge/charge curves at 20 mA g⁻¹, rate curves (20, 40, 60, 80, 100, and 200 mA g⁻¹), and cycling stability of $V_2O_{3-x}@rGO//KVO@rGO$ SIBs, respectively.

Active materials	Stored alkali metal ion	Current	Discharge	Referenc e	
		density	capacity		
		(mA g ⁻¹)	(mAh g ⁻¹)		
V ₂ O _{3-x} @rGO	Na	200	151	This work	
		1000	101		
V₂O₃₋ _x @rGO	К	200	162	This work	
		1000	104		
V_2O_3/C core/shell nanofiber	Li	1000	145	[1]	
Polycrystalline V ₂ O ₃ nanorod	Li	1200	100	[2]	
Na ₆ [V ₁₀ O ₂₈] polyoxometalate	Na	200	~100	[3]	
V ₂ O ₃ nanoparticle	Na	1000	50	[4]	
V ₂ O ₃ @carbon	Na	1000	120	[4]	
nanocomposites	ING	1000	120		
V ₂ O ₃ @graphene nanobelts	Na	1000	115	[5]	
Quantum V ₂ O ₃ @carbon	Na	1000	140	[6]	
$K_{0.23}V_2O_5$ nanoplates	К	400	92	[7]	
V ₂ O ₃ @PNCNFs	к	50	240	[8]	
		1000	114		
K ₂ Ti ₈ O ₁₇ nanorod clusters	К	200	~90	[9]	
KTi ₂ (PO ₄) ₃ nanocubes	К	64	~75.6	[10]	
K _{0.6} Mn ₁ F _{2.7} hollow nanocubes	к	200	118	[11]	
		1000	78		
Porous carbon Fe ₃ O ₄	К	200	127	[12]	

Table S1. Comparison of the electrochemical performances of $V_2O_{3-x}@rGO$ anodes with recently reported V_2O_3 and typical metal oxide anodes.

Reference for Table S1:

- 1. X. Li, J. Fu, Z. Pan, J. Su, J. Xu, B. Gao, X. Peng, L. Wang, X. Zhang, P. K. Chu, J. Power Sources, 2016, 331, 58-66.
- 2. D. McNulty, D. N. Buckley, C. O'Dwyer, ChemElectroChem, 2017, 4, 2037-2044.
- 3. S. Hartung, N. Bucher, H. Chen, R. Al-Oweini, S. Sreejith, P. Borah, Z. Yanli, U. Kortz, U. Stimming, H. E. Hoster, M. Srinivasan, J. Power Sources, 2015, 288,270-277.
- 4. X. An, H. Yang, Y. Wang, Y. Tang, S. Liang, A. Pan, G. Cao, Sci. China Mater., 2017, 60, 717-727.
- 5. J. Zhang, Q. Li, Z. Liao, L. Wang, J. Xu, X. Ren, B. Gao, P. K. Chu, K. Huo, ChemElectroChem, 2018, 5, 1387-1393.
- 6. Y. Cai, G. Fang, J. Zhou, S. Liu, Z. Luo, A. Pan, G. Cao, S. Liang, Nano Res., 2018, 11, 449-463.
- 7. C. Liu, S. Luo, H. Huang, Z. Wang, Q. Wang, Y. Zhang, Y. Liu, Y. Zhai, Z. Wang, J. Power Sources, 2018, 389, 77-83.
- 8. T. Jin, H. Li, Y. Li, L. Jiao, J. Chen, Nano Energy, Nano Energy, 2018, 50, 462-467.
- 9. J. Han, M. Xu, Y. Niu, G. Li, M. Wang, Y. Zhang, M. Jia, C. Li, Chem. Commun., 2016,52, 11274-11276.
- 10. J. Han, Y. Niu, S. Bao, Y. Yu, S. Lu, M. Xu, Chem. Commun., 2016, 52, 11661-11664.

- Z. W. Liu, P. Li, G. Q. Suo, S. Gong, W. (Alex) Wang, C. Y. Lao, Y. J. Xie, H. Guo, Q. Y. Yu, W. Zhao, K. Han, Q. Wang, M. L. Qin, K. Xi, X. H. Qu, Energy Environ. Sci., 2018, 11, 3033 -3042.
- 12. J. Ming, H. Ming, W. Yang, W. Kwak, J. Park, J. Zheng, Y. Sun, RSC Adv., 2015, 5, 8793-8800.

Active materials (anode//cathode)	Potential window	Cycling current density (mA g ⁻ ¹)	Cycling number	Initial discharge capacity/cycling retention (mAh g ⁻¹)	Referenc e
V ₂ O _{3-x} @rGO//KV ₅ O ₁₃	1.5-3.1 V	100	250	51.4/75.1%	This work
K _{0.7} Fe _{0.5} Mn _{0.5} O ₂ //soft carbon	0.5-3.5 V	100	250	48/76%	[2]
K _{0.6} CoO ₂ // hard carbon	0.5-3.8 V	30	100	72/79%	[3]
K _{0.51} V ₂ O ₅ //graphite	1.8-3.9 V	300	100	80/84%	[4]
K _{0.3} MnO ₂ //hard carbon-carbon black	0.5-3.4 V	32	100	82/51%	[10]
K _{1.92} Fe[Fe(CN) ₆] _{0.94} ·0.5H ₂ O//Dipotassium terephthalate	1.5-3.8 V	60	65	110/90%	[14]
K _{0.6} CoO ₂ // soft carbon	0.5-3.5 V	20	50	84/84%	[1]
K _{0.22} Fe[Fe(CN) ₆] _{0.805} ·4.01H ₂ O//Super P	1-3.8 V	100	50	73/89%	[8]
K ₃ V ₂ (PO ₄) ₂ F ₃ //graphite	1.5-4.6 V	10	50	84/70%	[12]
K2C6O6//K2C6O6	0.5-2 V	25	10	70/61%	[11]
K _{1.98} Mn[Fe(CN) ₆] _{0.92} //WS ₂	2-4 V	10	10	40/80%	[9]
K _{0.6} CoO ₂ //graphite	0.5-3.8 V	3	5	53/47%	[13]

Table S2. Comparison of the electrochemical performances of reported full PIBs.

Reference for Table S2:

- 1. X. Wang, K. Han, D. Qin, Q. Li, C. Wang, C. Niu, L. Mai, Nanoscale, 2017, 9, 18216-18222.
- 2. X. Wang, X. Xu, C. Niu, J. Meng, M. Huang, X. Liu, Z. Liu, L. Mai, Nano Lett., 2017, 17, 544–550.
- T. Deng, X. Fan, C. Luo, J. Chen, L. Chen, S. Hou, N. Eidson, X. Zhou and C. Wang, Nano Lett., 2018, 18, 1522–1529.
- 4. Y. Zhu, Q. Zhang, X. Yang, E. Zhao, T. Sun, X. Zhang, S. Wang, X. Yu, J. Yan, Q. Jiang, Chem, 2019, 5, 1-12.
- 5. Y. Fang, L. Xiao, J. Qian, Y. Cao, X. Ai, Y. Huang, H. Yang, Adv. Energy Mater., 2016, 6, 1502197.
- 6. X. Wang, S. Kajiyama, H. Linuma, E. Hosono, S. Oro, I. Moriguchi, M. Okubo, A. Yamada, Nat. Commun., 2015, 6, 6544.
- 7. Z. Zhu, F. Cheng, Z. Hu, Z. Niu, J. Chen, J. Power Sources, 2015, 293, 626-634.
- 8. C. Zhang, Y. Xu, M. Zhou, Y. Liang, H. Dong, M. Wu, Y. Yang, Y. Lei, Adv. Funct. Mater., 2017, 27, 1604307.
- 9. R. Zhang, J. Bao, Y. Pan, C. Sun, Chem. Sci., 2019, DOI: 10.1039/c8sc04350g.
- 10. C. Vaalma, G. Giffin, D. Buchholz, S. Passerinia, J. Electrochem. Soc., 2016, 163,

A1295-A1299.

- 11. Q. Zhao, J. Wang, Y. Lu, Y. Li, G. Liang, J. Chen, Angew. Chem. Int. Ed., 2016, 55, 12528-12532.
- 12. X. Lin, J. Huang, H. Tan, J. Huang, B. Zhang, Energy Storage Mater., 2019, 16, 97-101.
- 13. H. Kim, J. Kim, S. Bo, T. Shi, D. Kwon, G. Cede, Adv. Energy Mater. 2017, 7, 1700098
- 14. J. Liao, Q. Hu, Y. Yu, H. Wang, Z. Tang, Z. Wen, C. Chen, J. Mater. Chem. A, 2017, 5, 19017.