Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting information

Origins of capacity and voltage fading of $LiCoO_2$ upon high

voltage cycling

Yuyuan Jiang, Changdong Qin, Pengfei Yan*, Manling Sui*

Beijing Key Laboratory of Microstructure and Properties of Solids, Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124, China

Figure S1. (a) Evolution of the charge/discharge voltage profiles cycled at 2.7- 4.4 V. (b) Evolution of the charge/discharge voltage profiles cycled at 2.7- 4.55 V.

Figure S2. The average charge/discharge voltages of $LiCoO_2/Li$ -metal half-cells when cycled at 0.2C rate (140 mAh g⁻¹) with different voltage windows, 2.7-4.2V, 2.7-4.4V, 2.7-4.55V and 2.7-4.7V.

Figure S3. The charge/discharge voltage from Figure 1d to show the capacity and voltage fading.

Figure S4. STEM-HAADF observation of the bulk structure before and after heat treatment. (a) A low magnification and enlarged lattice STEM-HAADF image of the pristine LiCoO₂ cathode before heating (left panel) and after heating to 200 °C for 30 minutes (right panel). (b) A low magnification and enlarged lattice STEM-HAADF image of the LiCoO₂ cathode after 50 cycles at 2.7-4.2 V before heating (left panel) and after heating to 200 °C for 30 minutes (right panel). The typical layered structure still maintain after heating for (a) and (b).

Figure S5. The XRD patterns of the pristine $LiCoO_2$ cathode sample and the samples after 50 cycles in the voltage range of 2.7-4.2 V, 2.7-4.55 V and 2.7-4.7 V.

Figure S6. STEM-HAADF images of the sample after 50 cycles in the voltage range of 2.7- 4.2 V.

Figure S7. STEM-HAADF observation of the surface phase transformation layer of LiCoO₂ cathode after electrochemical cycling.

- (a) Low and high resolution STEM-HAADF images of $LiCoO_2$ electrodes cycled at 2.7-4.4 V.
- (b) Low and high resolution STEM-HAADF images of $LiCoO_2$ electrodes cycled at 2.7-4.55 V.

Figure S8. STEM-HAADF observation of the surface phase transformation layer of LiCoO₂ cathode cycled with different cycle numbers.

- (a) Low and high resolution STEM-HAADF images of LiCoO_2 electrodes after one cycle.
- (b) Low and high resolution STEM-HAADF images of LiCoO₂ electrodes cycled after 10 cycles.
- (c) Low and high resolution STEM-HAADF images of LiCoO₂ electrodes cycled after 50 cycles.

Figure S9.Surface corrosion of LiCoO2 particles after 200 cycles at 2.7-4.2V. (a) Low magnification STEM-HAADF image to show the surface reconstruction layer indicated by the yellow dashed line. (b) Enlarged lattice STEM-HAADF image from (a). (c-d) EDS mapping from (a), showing loss of Co and O at the SRL layer.

Figure S10. SEM images of pristine $LiCoO_2$. The particle surface is clear and clean.

Figure S11. The component analysis of CEI layer by XPS.

(a) The Co 2p XPS spectra of $LiCoO_2$ electrode with pristine sample and the samples after 50 cycles in the cycling voltage of 2.7- 4.2 V and 2.7- 4.7 V.

(b) C1s XPS spectra of LiCoO₂ electrode with pristine sample and cycling 50 cycles in the cycling voltage of 2.7- 4.2 V and 2.7- 4.7 V.

Figure S12. dQ/dV curves of LiCoO₂ cathode cycled at different voltage windows. (a) dQ/dV curves of LiCoO₂ cathode measured at 1st, 10th, 20th, 30th, 40th, 50th in the cycling voltage of 2.7- 4.2 V.

(b) dQ/dV curves of LiCoO₂ cathode measured at 1st, 2th, 3th, 4th, 5th in the cycling voltage of 2.7- 4.7 V.

Figure S13. Observing the CEI layer evolution when cycled at different voltage windows. (a) STEM-HAADF images of a LiCoO_2 particle after 10 cycles at 2.7-4.7 V, showing the CEI layer is hundreds of nanometers in thickness. (b) STEM-HAADF images of a LiCoO_2 particle after 10 cycles at 2.7-4.7 V followed by 10 cycles at 2.7-4.2 V, showing the CEI layer left on particle surface is thin and not uniform.

Figure S14. The electrochemical impedance spectra of LiCoO₂/Li-metal Half-cells measured at 1st, 10th, 20th, 30th, 40th, 50th in the cycling voltage of 2.7- 4.7 V.

Figure S15. (a) Charge/discharge voltage profiles of a $LiCoO_2/Li$ -metal Half-cell during the first10 cycles cycled at 2.7-4.7 V at 0.2C rate. (b) The charge/discharge voltage profiles at 11th cycle (1C rate), 12th cycle (0.2C rate) and 13th cycle (0.05C rate) followed (a). The red arrow indicates voltage fading is alleviated by reducing cycle current.

Figure S16. Observing cracks in $LiCoO_2$ samples cycled at different voltage windows.

(a-d) SEM images of surface morphology of $LiCoO_2$ electrodes after 50 cycles. (a) 2.7- 4.2 V, (b) 2.7- 4.4 V, (c) 2.7- 4.55 V and (d) 2.7- 4.7 V.

(e-h) Corresponding cross-sectional SEM images from a-d. (e) 2.7-4.2 V, (f) 2.7-4.4 V, (g) 2.7-4.55 V and (h) 2.7-4.7 V. Cracks are highlighted by yellow arrows.

(i-I) Low resolution STEM-HAADF images of LiCoO₂ electrodes after 50 cycles. (i) 2.7- 4.2 V, (j) 2.7- 4.4 V, (k) 2.7- 4.55 V and (l) 2.7- 4.7 V. Cracks are highlighted by yellow arrows.