Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Metal organic frameworks-derived hollow cactus-like carbon sheet for oxygen reduction

Ming Zhang, Chaohai Wang, Xin Yan, Klu Prosper Kwame, Saisai Chen, Chengming Xiao, Junwen Qi, Xiuyun Sun, Lianjun Wang, Jiansheng Li*

Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China

lijsh@njust.edu.cn.

Materials and Methods:

Materials:

2-methylimidazole (2-MeIm), $Co(NO_3)_3 \cdot 6H_2O$, $Zn(NO_3)_3 \cdot 6H_2O$, dopamine hydrochloride (PDA), potassium hydroxide (KOH) and nafion were purchased from Sigma-Aldrich. Anhydrous ethanol and sulfuric acid (H_2SO_4) were obtained from Nanjing Chemical Reagent Co., Ltd. All the reagents were directly used without further purification. Deionized (DI) water was used all the experiments.

Synthesis of leaf-like ZIFs. In a typical experiment, 5.0 g of 2-MeIm was added to 100 mL of DI water with stirring for 10 min. Then 1.32 g of Zn(NO₃)₂·6H₂O and 0.33 of Co(NO₃)₂·6H₂O dissolved in 100 mL solution was added into the above solution with stirring for 3 h at room temperature. The resultant purple precipitate was collected by centrifugation with 3000 r/min for 5 min and washed with DI water and ethanol for three times, respectively. Finally, the purple powder was dried under vacuum 6 h at 80 °C.

Synthesis of ZIFs@PDA. In a typical synthesis. 5.0 g of 2-MeIm was added to 100 mL of DI water with stirring for 10 min. Then 1.32 g of Zn(NO₃)₂·6H₂O and 0.33 of Co(NO₃)₂·6H₂O dissolved in 100 mL solution was added into the above solution with stirring for 3 h at room temperature. 0.25 g of PDA dissolved in 20 mL of DI water was added into above solution for another 8 h at room temperature. The resultant black precipitate was collected by centrifugation with 2000 r/min for 5 min and washed with DI water and ethanol for three times, respectively. After drying, composite ZIFs@PDA was obtained. The composites 0.5-ZIFs@PDA and 0.75-ZIFs@PDA were obtained using the same method except PDA was 0.5 and 0.75 g, respectively.

Synthesis of ZIFs-9, 0.25/0.75-CS/CNTs-9 and 0.5-CS/CNTs-7/8/9/10. 0.5-CS/CNTs-7/8/9/10 were prepared by directly carbonizing 0.5-ZIFs@PDA precursor in N₂ atmosphere at different temperature 700, 800, 900 and 1000 °C, respectively. ZIFs-9 and 0.25/0.75-CS/CNTs-9 were obtained by carbonizing the corresponding precursors in N₂ atmosphere at 900 °C. The resultant samples were acid etching for 24 h to remove the unstable cobalt nanoparticles.

Characterization: The structure and morphology of samples were confirmed by TEM (FEI T20), STEM (Tecnai G2 F30 S-TWIN), SEM (FEI 250 and JEOL 7800). The composition was investigated by XRD (BRUKER D8, Cu K α) at 40 kV and 40 mA (λ = 1.5418Å). The N₂ adsorption and desorption isotherms were obtained from Micromeritics ASAP-2020

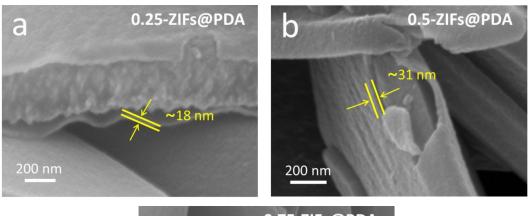
instrument. X-ray photoelectron spectroscopy (XPS) spectra were obtained by using a PHI Quantera II ESCA System with Al K α radiation at 1486.8V. Raman spectroscopy was conducted at Renishaw in Via reflex spectrometer system. Thermal investigations are studied by thermogravimetric analysis (TGA, SDT Q600, USA) from 25 to 900 °C under Ar with a heating rate of 10 °C/min. GC-MS experiments were conducted on an Agilent Technologies 7980 GC equipped with 5975 MS. The chromatographic separations were conducted using an HP-5 MS capillary column (30 m × 0.25 mm. i. d. × 0.25 μ m).

Electrochemical Measurement. The electrochemical measurement of ZIFs-9, 0.25/0.75-CS/CNTs-9, 0.5-CS/CNTs-7/8/9/10 and Pt/C for ORR were carried out in a three-electrode cell (CHI 760E, CH Instrument, Shanghai). The Ag/AgCl electrode (3 M KCl), platinum sheet and sample-modified glassy carbon were the reference, counter electrode and working electrode, respectively. The working electrode was prepared according to previous literature. 10 mg of catalyst was dispersed in 2 mL of mixed solution of ethanol/water (70/30) and ultrasonic dispersion for 15 min. Then the rotary disk electrode (diameter 5 mm) was covered with 75 µL of catalyst dispersion. After drying, 7.5 µL of nation solution (10% in ethanol) as the binder was dripped on the surface of catalyst. Finally, the prepared electrode was dried at 50°C for 3 h. Cyclic voltammetry (CV) tests were measured from 0.1 to 1.1 V versus reversible hydrogen electrode (RHE) in N_2/O_2 -saturated 0.1 M KOH aqueous solution (the scan rate: 10 mV s⁻¹). Linear sweep voltammogram (LSV) tests were carried out under different rotations in a N₂/O₂saturated 0.1 M KOH electrolyte (scan rate: 10 mV s⁻¹). Current–time (*I*–*t*) tests were performed at the rotation rate of 1600 rpm in a 0.1 M KOH aqueous solution. electrochemical impedance spectroscopy (EIS) were measured in the frequency range of 0.01-100 0000 Hz with 5 mV alternating current amplitude.

The electron transfer numbers (n) were obtained according to the Koutecky–Levich (K-L) equation, as follows:

$$\frac{1}{j} = \frac{1}{j_k} + \frac{1}{B\omega^{1/2}} \tag{1}$$

$$n = \frac{B}{0.2F(D_0)^{2/3}(V)^{-1/6}C_0}$$


$$j_k = nFkC_0$$
(3)

where j and j_k correspond to measured and kinetic-limited current densities, respectively; B can be determined from the slope of the K-L plots; ω is the rotation rate (rpm); F is the Faraday constant (96485 C mol⁻¹); D_0 is the diffusion coefficient of oxygen (1.9×10⁻⁵ cm² s⁻¹, 0.1 M KOH); V is the kinematic viscosity of the electrolyte (0.01 cm s⁻¹, 0.1 M KOH); C_0 is the concentration of oxygen (1.22×10⁻⁶ mol cm⁻³).

The rotating ring-disk electrode (RRDE) cures at 1600 rpm with a scan rate of 10 mV s⁻¹, and the hydrogen peroxide yield ($^{\circ}$ H₂O₂) is calculated by the following equation:

$$_{\text{0}}^{M} H_{2}O_{2} = 200 \frac{I_{r}/N}{I_{d} + I_{r}/N}$$

where $I_{\rm d}$ and $I_{\rm r}$ are the disk and ring current, respectively. N is the ring current collection efficiency which is determined to be about 0.35 in a 10 mM K₃[Fe(CN)₆] and 0.1 M KNO₃ solution.

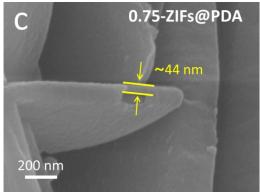


Fig. S1 The thickness of PDA layer for 0.25/0.5/0.75-ZIFs@PDA.

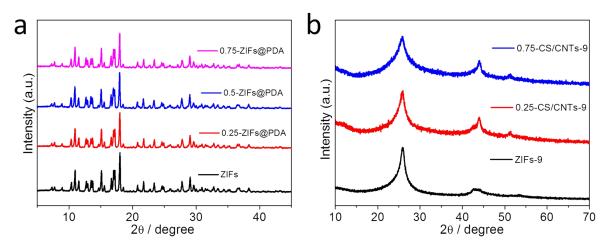


Fig. S2 (a) the powder XRD of precursors ZIFs, 0.25/0.5/0.75-ZIFs@PDA; (b) the powder XRD of carbides ZIFs-9, 0.25/0.75-CS/CNTs-9.

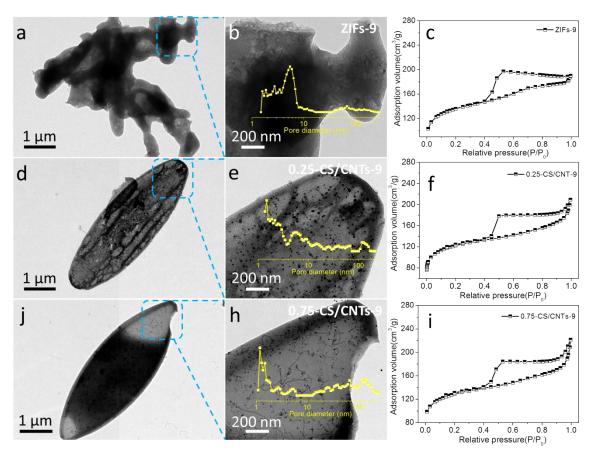


Fig. S3 The TEM (a, d and j), enlarged TEM (b, e and h) images, pore size distribution (inset b, e and h) and N_2 -adsorption and desorption curves (c, f and i) of ZIFs-9, 0.25-CS/CNTs-9 and 0.75-CS/CNTs-9, respectively.

Table S1 The $S_{\text{BET}},\,V_{\text{pore}},\,V_{\text{micro}}$ and the content of different nitrogen species

Sample	S_{BET} (m ² g ⁻¹)	V_{pore} (cm ³ g ⁻¹)	V_{micro} (cm ³ g ⁻¹)	All nitrogen (%)	Pyridinic- N (%)	Pyrrolic- N (%)	Graphitic- N (%)
ZIFs-9	472	0.28	0.12	4.68	26.6	18.2	55.1
0.25-CS/CNT-9	426	0.30	0.10	5.02	31.1	19.8	49.1
0.50-CS/CNT-9	476	0.34	0.11	5.51	33.4	18.4	48.1
0.75-CS/CNT-9	448	0.32	0.11	6.48	31.9	20.3	47.8
0.50-CS/CNT-7	266	0.18	0.09	18.04	56.8	27.4	15.8
0.50-CS/CNT-8	332	0.27	0.09	11.37	52.3	23.5	24.2
0.50-CS/CNT- 10	347	0.45	0.06	2.17	18.0	16.9	65.1

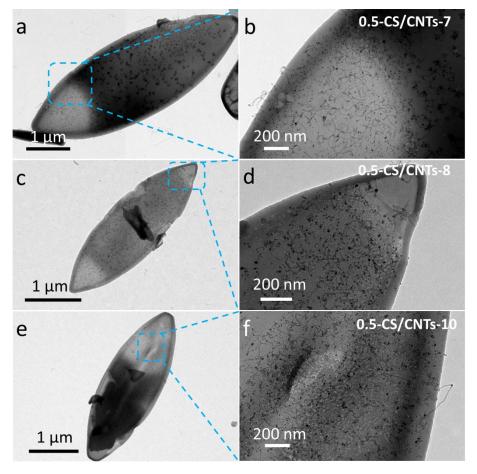


Fig. S4 The TEM (a, c and e) and enlarged TEM (b, d and f) images of 0.5-CS/CNTs-7, 0.5-CS/CNTs-8 and 0.5-CS/CNTs-10, respectively.

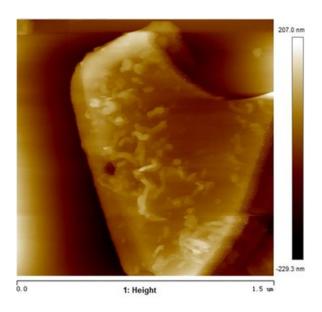


Fig. S5 The AFM image of 0.5-CS/CNTs-9.

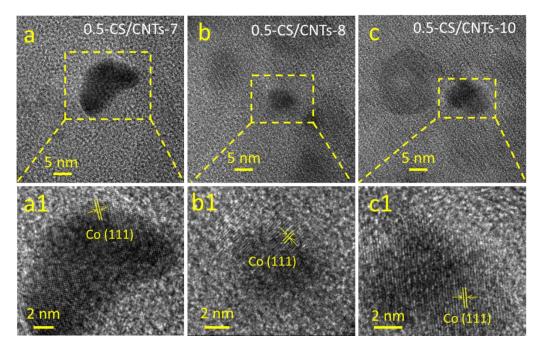


Fig. S6 The HR-TEM images of Co nanoparticle in 0.5-CS/CNT-7/8/10.

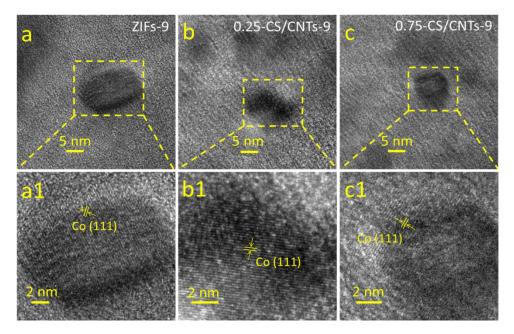


Fig. S7 The HR-TEM images of Co nanoparticle in ZIFs-9 and 0.25/0.75-CS/CNT-9.

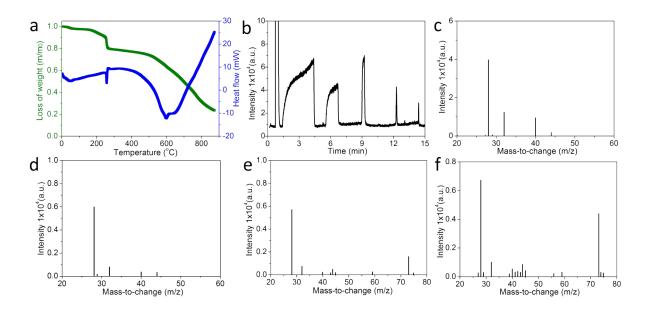


Fig. S8 (a) TGA and heat flow curves of 0.5-ZIFs@PDA in Ar atmosphere; the heating rate is 5 °C/min; (b-f) the GC spectrum and mass spectra of 0.5-ZIFs@PDA .

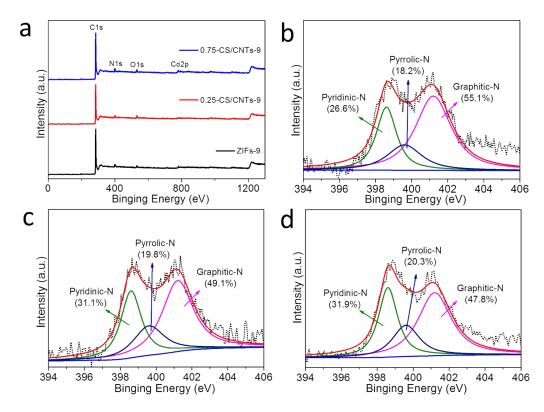


Fig. S9 The wide-range (a) and high-resolution N1s XPS spectra of 0.75-CS/CNTs-9 (b), 0.25-CS/CNTs-9 (c) and ZIFs-9 (d), respectively.

Fig. S10 The wide-range XPS spectra of 0.5-CS/CNTs-7, 0.5-CS/CNTs-8, 0.5-CS/CNTs-9, and 0.5-CS/CNTs-10.

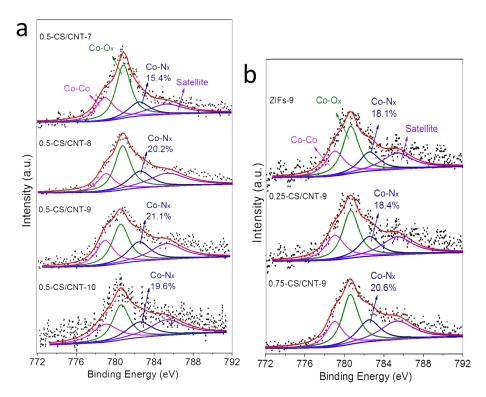


Fig S 11 high-resolution Co_{2p} XPS spectra of 0.5-CS/CNTs-7/8/9/10 (a) and ZIFs-9, 0.25/0.75-CS/CNTs-9 (b).

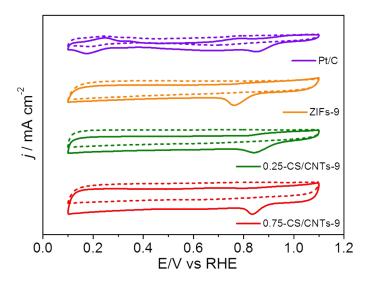


Fig. S12 CVs curves of Pt/C, ZIFs-9, 0.25-CS/CNTs-9 and 0.75-CS/CNTs-9 at a scan rate of 10 mV/s in N_2/O_2 -saturated 0.1 M KOH solution

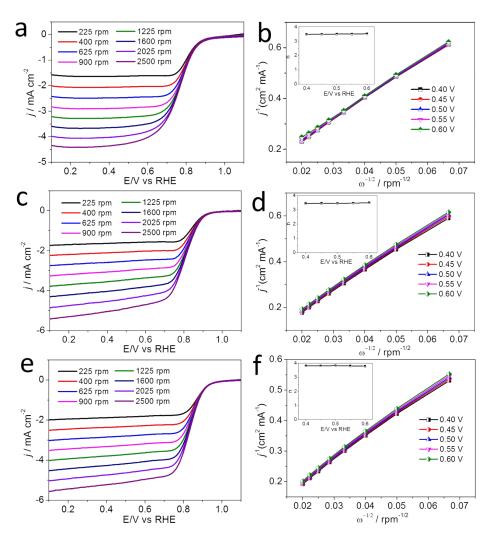


Fig. S13 The different rotation speeds of polarization curves (a, c and e) and K-L plots (b, d and f) of ZIFs-9, 0.25-CS/CNTs-9 and 0.75-CS/CNTs-9, respectively.

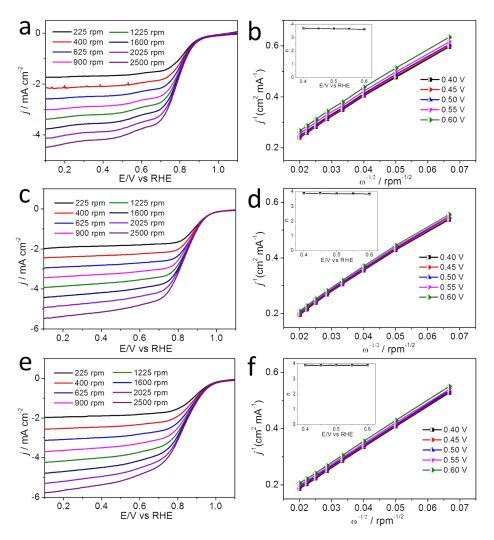
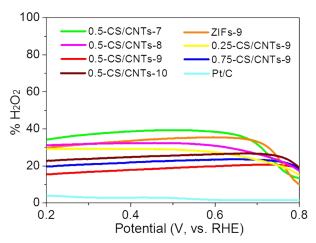



Fig. S14 The different rotation speeds of polarization curves (a, c and e) and K-L plots (b, d and f) of 0.5-CS/CNTs-7, 0.5-CS/CNTs-8 and 0.5-CS/CNTs-10, respectively.

Table. S2 the comparative of ORR performance.

Catalyst	E _{1/2} (V vs. Ag/AgCl)	E _{1/2} (V vs. Ag/AgCl)	Ref.
	(Catalyst)	(Pt/C)	
C-MOF-C2-900	0.817	0.815	1
GSP-1000	0.84	0.85	2
NixCoyO4/Co-NG	0.804	0.813	3
Co-N-C-0.4	0.84	0.84	4
N-CNTs-650	0.85	0.83	5
NC@Co-NGC DSNCs	0.81	0.82	6
Fe-N/C-800	0.851	0.868	7
0.5-CS/CNTs-9	0.857	0.861	This work

 $Fig.~S15~H_2O_2~yield~of~Pt/C,~ZIFs-9,~0.5-CS-CNTs-7/8/9/10~and~0.25/0.75-CS/CNTs-9~at~various~potentials~based~on~RRDE~data.$

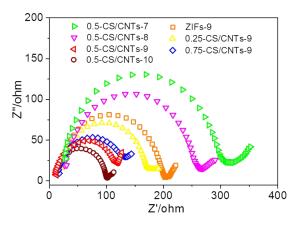


Fig. S16 Nyquist plots of 0.5-CS/CNTs-7/8/9/10, 0.25/0.75-CS/CNTs-9 and ZIFs-9 in the frequency range of 0.01-1000000 Hz.

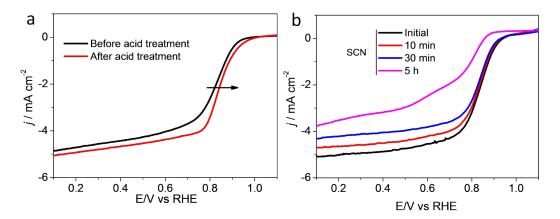


Fig. S17 (a) The LSV curves of as-prepared 0.5-CS/CNTs-9 before and after acid treatment; (b) effect of SCN- ions on ORR performance.

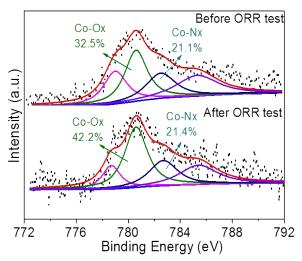


Fig. S18 The high-resolution Co_{2p} XPS spectra of 0.5-CS/CNTs-9 before and after ORR test.

References

- 1. M. Zhang, Q. Dai, H. Zheng, M. Chen and L. Dai, Adv. Mater., 2018, 1705431.
- 2. B. Huang, Y. Liu, X. Huang and Z. Xie. J. Mater. Chem. A, 2018, 6, 22277.
- 3. Y. Hao, Y. Xu, J. Liu and X. Sun, J. Mater. Chem. A, 2017, 5, 5594.
- 4. E. Hu, J. Ning, B. He, Z. Li, C. Zheng, Y. Zhong, Z. Zhang and Y. Hu, J. Mater. Chem. A, 2017, 5, 2271.
- J. Meng, C. Niu, L. Xu, J. Li, X. Liu, X. Wang, Y. Wu, X. Xu, W. Chen, Q. Li, Z. Zhu, D. Zhao and L. Mai, J. Am. Chem. Soc., 2017, 139, 8212.
- 6. S. Liu, Z. Wang, S. Zhou, F. Yu, M. Yu, C. Y. Chiang, W. Zhou, J. Zhao and J. Qiu, *Adv. Mater.*, 2017, 1700874.
- 7. L. Lin, Q. Zhu, and A. -W. Xu, J. Am. Chem. Soc. 2014, 136, 11027.