Supporting Information

Core-shell TiO₂@C ultralong nanotubes with enhanced adsorption

for antibiotics

Zhe Wang^a, Hongmei Tang^a, Wenyao Li^{*,a,b}, Jianwei Li^c, Ruoyu Xu^b, Kenan Zhang^a, Guanjie He^{*,b,c}, Paul R. Shearing^b, Dan J. L. Brett^{*,b}

^a School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620,

China

^b Electrochemical Innovation Lab, Department of Chemical Engineering, University College

London, London WC1E 7JE, UK

^c Department of Chemistry, University College London, London, WC1H 0AJ, UK

Correspondence: liwenyao314@gmail.com; g.he@ucl.ac.uk; d.brett@ucl.ac.uk

Fig. S1 The Raman spectrum of TiO₂@C

The Raman spectrum of TiO₂@C is shown in Fig. S1, there are five anatase phase TiO₂ feature peaks at 145, 198, 394, 514, 635 cm⁻¹, respectively.¹ Moreover, the G band at ~1600 cm⁻¹ reflects the in-plane vibration of sp² carbon atoms, while the D band at ~1386 cm⁻¹ represents a defect induced Raman feature peak of carbon-based material, implying the non-perfect crystalline structure of the carbon shell.² The peak intensity ratio between G band and D band (I_G/I_D) is 1.1796, indicating that carbon defect structure in the carbon structure is relatively small and the dominant component in the carbon structures is the sp².

Fig. S2 The N₂ adsorption-desorption isotherm of TiO₂ nanotubes, the BET Surface Area is $302.18 \text{ m}^2 \text{ g}^{-1}$, and it is lower than TiO₂@C composite.

Fig. S3 The contact angles of (a) TiO₂ nanotube of 40.2° (b) and TiO₂@C of 11.4°

Fig. S4 XPS spectra of the TiO₂@C before and after the TC antibiotic adsorption.

Fig. S5 The chemical structure of TC, NFO and OFO

Reference:

[1] M. Lubas, J. J. Jasinski, M. Sitarz, L. Kurpaska, P. Podsiad, J. Jasinski, Spectrochim Acta, 2014, 133, 867-871.

[2] V. Etacheri, C. Wang, M. J. O'Connell, C. K. Chan, V. G. Pol, J. Mater. Chem. A, 2015, 3, 9861-9868.