Supporting Information

"Fishnet-like" Ion-selective Nanochannels in Advanced Membranes

for Flow Batteries

Lei Hu,^{a,b} Li Gao,^{a,b} Changkun Zhang,^c Xiaoming Yan,*^{a,b} Xiaobin Jiang,^b Wenji Zheng,^a Xuehua Ruan,^a Xuemei Wu,^b Guihua Yu^c and Gaohong He^{*a,b}

^a State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering, Dalian University of Technology, 2 Dagong Road, Panjin, LN 124221, China. Email: yanxiaoming@dlut.edu.cn; hgaohong@dlut.edu.cn

^b-State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, LN 116024, China. ^c-Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, TX 78712, USA.

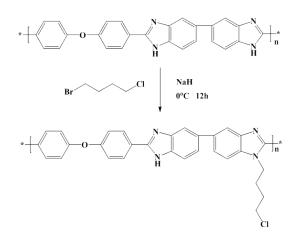


Figure S1. Synthesis of CPBI.

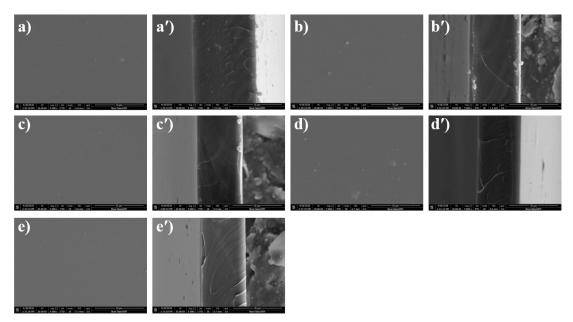


Figure S2. SEM images of membranes: PBI (a: surface, a': cross section); CPBI (b: surface, b': cross section); CPBI-PEI-10 (c: surface, c': cross section); CPBI-PEI-15 (d: surface, d': cross section); CPBI-PEI-20 (e: surface, e': cross section).

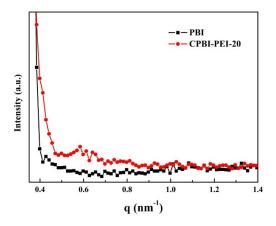


Figure S4. SAXS of PBI and CPBI-PEI-20 membrane.

Membrane	Proton conductivity ^a	VO ²⁺ permeability	Ion selectivity
	mS cm ⁻¹	10 ⁻¹⁰ cm ² s ⁻¹	10 ¹⁰ mS s cm ⁻³
PBI	35.2	No detected	-
CPBI	39.7	No detected	-
CPBI-PEI-10	63.1	0.5	118.1
CPBI-PEI-15	78.0	2.7	28.8
CPBI-PEI-20	115.9	9.2	12.6
Nafion 212	182.7	552.6	0.3

 Table S1. Proton conductivity, VO²⁺ permeability and ion selectivity of the prepared membranes.

^aThe proton conductivity is calculated from area resistances of prepared membranes as follow: proton conductivity = L/Area resistance, where L is thickness of membrane.

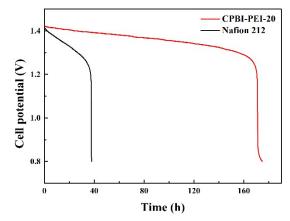


Figure S5. The self-discharge curves using CPBI-PEI-20 and Nafion 212 membranes.

Figure S6. Digital photograph of CPBI-PEI-20 membrane after 2000 charge-discharge cycles at 120 mA

cm⁻².

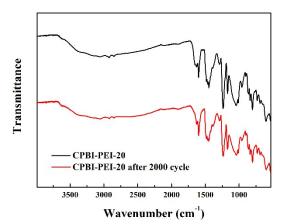


Figure S7. FTIR spectra of CPBI-PEI-20 membranes before and after 2000 charge-discharge cycles at 120

mA cm⁻².