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1. Properties of GF, (x=0.5, 0.8, 1.1) and CF, materials
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Figure S1. (a) XRD patterns, (b) 13C NMR and (c) '°F NMR spectra of prepared fluorinated

graphene nanosheets GFx (x = 0.5, 0.8, 1.1) and fluorinated graphite CF;, materials. (d)



Discharge profiles of GF s at different current densities. SI-CF and COV-CF in Figure Slc
refer to the semi-ionic and covalent CF bonds, respectively. (¢) SEM and (f) TEM images of

GF, (x=0.5, 0.8, 1.1) and CF; o materials.



2. Ex-situ XPS spectra of GF, s materials
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Figure S2. XPS Cls, Fls, and Lils of GF, s materials under various discharge states.



3. Ex-situ ’F NMR results of GF, s and GF,g materials
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Figure S3. (a) Stack patterns of mass-normalized 'F NMR spectra of the GF, s electrodes
(PVDF as the binder) under variable discharge states. (b) Integrated "Li peaks areas and (c)
9F peaks areas of LiF signals in 7Li and 'F NMR spectra. (d) °’F NMR spectra of GFy s
electrodes (sodium carboxymethyl cellulose as binder) at pristine and D1.5 states. (¢) Mass-
normalized 'F NMR spectra of the GF,g electrodes (PVDF as binder) under different

discharge states.



4. Ex-situ ’F NMR spectra and XRD patterns of CF;, materials

(a) LiF (b)
SI-CF
D1.5 o Pristine
* TS —— D400
‘ D600
D700 ‘ — D700
_/\______ﬂ\/t DI.5
D600
D400 J F )
—— e
Pristine J L " ‘{ ;.‘1
* ) & o Ay Il
4 R o N
L i’ Yyl | )
\ N . "WWWA;,;;;” S ﬁﬂ:n‘;
I T N N T T [N T T TN [N ST S S | Le oo e v v v b vy v by vy
-50 -100 -150 -200 -250 10 20 30 40 50
"F shift (ppm) 2 Theta (°)
C
( ) 30F
& 25
]
&
©
= 2.0
1 5 1 L I 1 L l L 1 I 1 L I 1 L l il L
0 150 300 450 600 750 900
Capacity (mAh g")

Figure S4. (a) Mass-normalized 'F NMR spectra and (b) XRD patterns of CF;, under
variable discharge states. (¢) Discharge profile of CF;, at a current density of 20 mA g-'. The

asterisks in Figure S3a refer to the spinning sidebands.



5. Properties of reference materials GFy (x = 0.06 - 0.22)
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Figure S5. (a) XRD patterns of GF; (x= 0, 0.06, 0.22, 0.5, 0.8, and 1.1) materials, and (b)
GF 06 and GF ,, electrodes at pristine and D1.5 states. (c) Mass-normalized '°F NMR spectra
of GF o4 electrodes at pristine and D1.5 states acquired with spinning frequency of 35 kHz. (d)

Corresponding discharge profiles of prepared GF( s and GF(,, materials for ex-sifu study.

The asterisks in Figure S4c refer to the spinning sidebands.



6. Morphology of GF s at pristine and discharge states in solid-state batteries
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Figure S6. SEM images of (a) pristine and (b) discharged GF,s materials in solid-state
batteries. (c) HR-TEM image of discharged GF,s material in solid-state batteries. The LiF

particle is squared in red.



7. Impedance results of GFys and GF,g materials during discharge
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Figure S7. EIS results and the fitting plots of (a) Li/GFs battery and (b) Li/GF(g battery
under different discharge states. (c) Fitting R, results of EIS. R and R, refer to the solution

resistance, and the sum of passivation layer resistance and charge-transfer resistance,

respectively.

The impedance of Li/GF; cell is fitted on the basis of the circuit diagram in Figure S7c. The

impedances of solution Ry and R, (the sum of passivation layer resistance and charge-transfer
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resistance) are included in the fitting. Since the decomposition of electrolyte to form SEI is
negligible in the first discharge process. The increasing impedance of Li/GFy cell during

discharge is mainly due to the change of GF, cathode.
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8. In-situ TEM device and schematics illustration of in-situ TEM test.
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Figure S8. (a) FEI Talos 200S TEM. (b) In-situ TEM device and (c) the enlarged view. (d)
schematics illustration of in-situ TEM test.
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9. Home-built in-situ electrochemical NMR probe.
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Figure S9. (a) Home-built in-situ electrochemical NMR probe. (b) Schematics illustration of
in-situ NMR test.
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10. Electronic conductivities of fluorinated graphene materials.

Table S1. Electronic conductivities of GF, materials.

Samples Area (cm?)  Thickness (cm) R (QQ) Conductivity (S/cm)
GF1.1 3.14 0.008 1.78E+08 1.43E-11
GF0.8 3.14 0.004 1.35E+07 9.44E-11
GFO0.5 3.14 0.006 3.60E+03 5.31E-07

The materials were firstly pressed into pieces under a certain pressure and then tested by EIS
method. The results show that the conductivity of GF 5 is 3~4 orders of magnitude higher

than that of GFy g and GF; ;.
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