Electronic Supplementary Information

Binding MoSe₂ with Dual Protection Carbon for High-Performance Sodium

Storage

Qiong Su, Xinxin Cao,* Ting Yu, Xiangzhong Kong, Yaping Wang, Jing Chen, Jiande Lin,

Xuefang Xie, Shuquan Liang and Anqiang Pan*

School of Materials Science and Engineering, Central South University, Changsha 410083,

Hunan, China

* Corresponding authors: caoxinxin@csu.edu.cn (X. Cao), pananqiang@csu.edu.cn (A. Pan)

Experimental

Materials synthesis

1. Synthesis of organic-inorganic hybrid material of MoO_x-EDA nanorods

All chemicals and reagents were used directly without any treatment. The organicinorganic hybrid material MoO_x-EDA nanorods were similarly prepared referring to previous reports¹⁻⁵. Typically, ethylenediamine (EDA) (0.93 mL, 14 mmol) was added to a solution of ammonium heptamolybdate ((NH₄)₆Mo₇O₂₄·4H₂O) (1.24 g, 1 mmol) in deionized water (20 mL) at room temperature. After that, 1 M HCl aqueous solution was dripped into the system slowly with magnetic stirring until a white precipitate appeared (PH 4~5). Then, the reaction was transferred to an oil bath and heat to 50 °C for 4 h. The obtained product was filtered and washed three times with deionized water and then dried at 50 °C for 24 h.

2. Synthesis of MoO_x-EDA@PDDA@GO composite

GO was obtained from commercial purchase. Poly dimethyl diallyl ammonium chloride (PDDA) in deionized water solution (4 mL, 1 wt. %) was added into GO suspension (10 mL, $\sim 5.0 \text{ mg mL}^{-1}$), which was processed ultrasound for 6 h, and then stirred for 1 h.

MoO_x-EDA@PDDA@GO-200: The as-prepared organic-inorganic hybrid material of MoO_x-EDA nanorods (200 mg) were dispersed in the above GO with PDDA by stirring for 40 min and then sonicated for 15 min. The obtained mixture was frozen and dried in a freezer dryer for 24 h.

MoO_x-EDA@PDDA@GO-25, MoO_x-EDA@PDDA@GO-50 and MoO_x-EDA@PDDA@GO-400 were prepared similarly as MoO_x-EDA@PDDA@GO-200, excepting that the mass of MoO_x-EDA is 25, 50, 400 mg, respectively.

3. Synthesis of MoSe₂@NC@rGO

MoSe₂@NC@rGO-200: The as-obtained fluffy earthy yellow organic-inorganic hybrid of MoO_x-EDA@PDDA@GO-200 (134 mg) and Se powder (150 mg) were mixed in a quartz boat in a tube furnace. Afterwards, the temperature was raised to 600 °C and kept it for 2 h to complete the reaction under H₂/Ar flow (5%/95%). The heating ramping rate was 3 °C min⁻¹. Then, the target product, MoSe₂@NC@rGO-200 composite was obtained.

MoSe₂@NC@rGO-25, MoSe₂@NC@rGO-50 and MoSe₂@NC@rGO-400 were prepared at the same condition as MoSe₂@NC@rGO-200, excepting that the starting materials are MoO_x-EDA@PDDA@GO-25, MoO_x-EDA@PDDA@GO-50 and MoO_x-EDA@PDDA@GO-400, respectively.

4. Synthesis of MoSe₂ nanorods

The as-obtained organic-inorganic hybrid of MoO_x -EDA (200 mg, 0.39 mmol) and Se powder (280 mg, 3.55 mmol) were placed in a quartz boat in a tube furnace. Then, the temperature was raised to 600 °C and kept it for 2 h to complete the reaction under H₂/Ar flow (5%/95%). The heating rate was set of 3 °C min⁻¹.

5. Synthesis of rGO

GO solution from commercial purchase was first frozen and dried in a freezer dryer for 24 h. Afterwards, the fluffy brown freeze-dried GO (150 mg) was placed in a quartz boat in a tube furnace. Then, the temperature was raised to 600 °C and kept at this temperature for 2 h to finish the reaction under H₂/Ar flow (5%/95%). The heating rate was 3 °C min⁻¹.

Characterization

The crystallographic phases of the samples were measured by X-ray diffraction (XRD, Rigaku D/max 2500, Cu-K α , $\lambda = 1.54178$ Å). Fourier transform infrared (FT-IR) spectra were obtained using an FT-IR spectrometer (Nicolet 6700). The characteristic bands of MoSe₂, GO and rGO and graphitization degree of samples were analyzed by Raman spectrometer (LabRAM HR800). The weight percentages of MoSe₂ in the composite were analyzed by thermogravimetric (TG, Netzsch, STA 449C), which were conducted in air from 25 to 700 °C with a heating ramp rate of 10 °C min⁻¹. The existence and valence of the element in the composite were identified by X-ray photoelectron spectroscopy spectrum (XPS, ESCALAB 250Xi). The morphologies and microstructures of samples were characterized by a field-emission scanning electron microscope (FESEM, FEI Nova NanoSEM 230), a high-resolution transmission electron microscope (HRTEM, Titan G2 60-300), the selected area electron diffraction (SAED) pattern and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM).

Electrode fabrication and electrochemical measurements

The anode was prepared by grinding the active materials (70 wt. %), super P (20 wt. %) and Carboxy Methyl Cellulose (CMC, 10 wt. %) binder, adding deionized water to get a viscous slurry, and then coating the slurry on Cu foil and dried in vacuum at 80 °C for 12 h. The diameter of each electrode is 12 mm and the active material loading of each plate is about 0.7-1.0 mg. The electrochemical performances of MoSe₂@NC@rGO, MoSe₂ and rGO were evaluated via CR2016 coin cells. All batteries were assembled in a glove box (Shanghai MIKROUNA) filled with ultra-high pure argon. The glass microfiber filters (Whatman GF/D) were employed as separator and 1 M NaClO₄ in propylene carbonate (PC) and fluoroethylene

carbonate (FEC) mixture solution (95: 5 in volume) were used as electrolyte. For half cells, Na plate was served as countered electrode. The voltage during the discharge/charge process was set at the range of 0.01 and 3.0 V. For Na-ion full cells, the cathode is made of $(Na_3V_2(PO_4)_3/C$ (75 wt. %), super P (15 wt. %) and polyvinylidene (PVDF, 10 wt. %) binder on an Al foil. Prior to full cells fabrication, one cycle activation of MoSe₂@NC@rGO anode was performed. The capacity ratio for cathode and anode was controlled around 1.1:1. The voltage during the discharge and charge process was set between 1.0 and 3.5 V for the fullcell. All the electrochemical measurements of the as-assembled batteries were tested on a Land Battery Tester (Land CT2001A). Cyclic voltammetry (CV) was conducted on an electrochemical workstation (CHI660E, Shanghai Chenhua Instrument Co., China) between 0.01 to 3.0 V. The electrochemical impedance spectroscopy (EIS) were recorded on an electrochemical workstation (ZAHNER-IM6ex, ZAHNER Co., Germany) in the frequency range of 10⁵ Hz to 0.01 Hz.

Fig. S1. XRD patterns of MoO_x-EDA@PDDA@GO composites, MoO_x-EDA and GO.

Fig. S2. FT-IR spectra of MoO_x -EDA, MoO_x -EDA@PDDA@GO-200 and $MoSe_2@NC@rGO-200$.

For MoO_x-EDA, the absorption peak in IR around 1597, 1529 and 1503 cm⁻¹ are assigned to v_{NH3+} , and the peak around 1167 cm⁻¹ is due to v_{C-N}^3 . Besides, v_{Mo-O} and $v_{Mo=O}$ are also detected around 509, 893 and 931 cm⁻¹⁶. With the addition of GO and PDDA, the spectrum of MoO_x-EDA@PDDA@GO-200 has changed slightly. After selenization, the above peaks are disappeared in MoSe₂@NC@rGO-200 IR spectra, suggesting that the MoO_x-EDA@PDDA@GO-200 precursor has been successfully transformed into MoSe₂@NC@rGO-200⁷⁻⁹.

Note S1.

According to Mo element conservation, the following equation (Eq. S1) is obtained, in which $\frac{M_{MoSe_2}}{M_{MoO_3}}$ and for the average molecular weight of MoSe₂ and MoO₃ respectively, and $\frac{M_{MoO_3}}{M_{MoO_3}}$ represents the percentage containing of MoO₃ in the system.

$$M_{MoSe_2}\% = \frac{\bar{M}_{MoSe_2}}{\bar{M}_{MoO_3}} \times M_{MoO_3}\%$$
 (Eq. S1)

 $M_{MoSe_2} = 253.86$, $M_{MoO_3} = 143.94$, $M_{MoO_3}^{\%}$ equals 56%, 49%, 46% and 31% for MoSe₂@NC@rGO-400, MoSe₂@NC@rGO-200, MoSe₂@NC@rGO-50 and MoSe₂@NC@rGO-25, respectively, from TG curves in Fig. 2c. Therefore, the corresponding mass loadings of MoSe₂ are estimated to be 98.8%, 86.4%, 81.1%, 54.7%.

Fig. S3. Survey spectrum of MoSe₂@NC@rGO-200.

Fig. S4. SEM images of (a) MoO_x -EDA@PDDA@GO-25, (b) MoO_x -EDA@PDDA@GO-50,

(c) MoO_x-EDA@PDDA@GO-200, (d) MoO_x-EDA@PDDA@GO-400.

Fig. S5. (a, b) TEM images; (c) HRTEM images; (d) SAED pattern; (e-j) HAADF-STEM images (Mo, Se, C, O, N) of MoSe₂@NC@rGO-50.

Fig. S6. (a, b) TEM images; (c) HRTEM images; (d) SAED pattern of MoSe₂@NC@rGO-400.

Fig. S7. (a) TEM images; (b) HRTEM images of MoSe₂@NC@rGO-200 treated with the mixture of HCl (37%) and HNO₃ (68%) (3:1 in volume).

Fig. S8. Nyquist plots of $MoSe_2@NC@rGO$ composites and $MoSe_2$ at 100 mA g⁻¹ after 5 cycles. The bottom inset is the corresponding equivalent circuit model.

The equivalent circuit model is composed of R_s (electrolyte resistance), R_f (the SEI layer resistance), CPE1 (the constant phase element), Z_w (the Warburg impedance), R_{ct} (the charge transfer resistance) and CPE2 (double layer capacitor)¹⁰⁻¹³.

 Table S1 The primary impedance fitting parameters of MoSe₂@NC@rGO composites and

 MoSe₂ after 5 cycles

Sample	R _f	R _{ct}
MoSe ₂ @NC@rGO-25	972.7	415.5
MoSe ₂ @NC@rGO-50	354	222.9
MoSe ₂ @NC@rGO-200	43.74	63.5
MoSe ₂ @NC@rGO-400	158.6	196.6
MoSe ₂	1975	169.1

Fig. S9. E vs. t curves of MoSe₂@NC@rGO-200 composite electrode for a single GITT during discharge process.

Note S2.

The Na⁺ diffusion coefficient (D) was tested by galvanostatic intermittent titration technique (GITT) and calculated based on Eq. S2 as follows:

$$D = \frac{4L^2}{\pi\tau} \left(\frac{\Delta E_s}{\Delta E_t}\right)^2$$
(Eq. S2)

Where *t* represents the duration of the current pulse (s). τ represents the relaxation time (s), and ΔE_s represents the steady-state voltage change (V) by the current pulse. ΔE_t represents the voltage change (V) during the constant current pulse after eliminating the iR drop. *L* represents Na⁺ diffusion length (cm), it equals to the thickness of electrode^{14, 15}.

During GITT process, $MoSe_2@NC@rGO-200$ anode was charged/discharged utilizing a current pulse of 100 mA g⁻¹ for 1020 s (pulse time), and then rested for 2040 s (relaxation

time). This is repeated until the cut-off potential is reached. In the GITT curve, the fast voltage variation (iR drop) is indexed to the charge transfer and ohm resistance, and the slow variation should be ascribed to the ion diffusion.

Fig. S10. GITT curves and the corresponding Na⁺ diffusion coefficient at different sodiation state of (a) rGO and (b) MoSe₂ electrodes.

Fig. S11. SEM images after 200 cycles at 1000 mA g⁻¹ for (a) MoSe₂@NC@rGO-25; (b) MoSe₂@NC@rGO-50; (c) MoSe₂@NC@rGO-200.

Fig. S12. SEM images after 200 cycles at 1000 mA g⁻¹ for (a) MoSe₂@NC@rGO-400; (b) MoSe₂.

	Cycling properties		Rate properties				
Anode Materials	Capacity (mA h g ⁻	Cycle number	Current density (mA g ⁻¹)	Capacity (mA h g ⁻¹)	Current density (mA g ⁻¹)	 full cell (mA h g⁻¹) (Cycle number, Current density) 	Year/Ref
MoSe2@NC@rGO	438	100	100	312	2000	300 (100 mA g ⁻¹)	This
							work
	360	200	1000	281	5000	208 (100, 1000 mA g-	
						¹)	
MoSe ₂ @CoSe ₂ /N-C	485	100	100	393	2000	345 (100 mA g ⁻¹)	20186
composite	347	300	2000			197 (100, 2000 mA g ⁻	
						¹)	
MoSe ₂ /C composite	404	100	200	192	5000	—	20181
MoSe ₂ @N-C	552	120	100	530	1000	—	201810
nanospheres				238	8000		
MoSe ₂ /HPCFs	347	100	100	243	2000	—	201816
MoSe ₂ -N,P-doped	337	100	100	223	1000	—	201817
rGO composites							
MoSe ₂ -rGO-CNT	393	200	1000	314	2000	—	201718
				275	5000		
MoSe ₂ /N,P-rGO	378	1000	500	351	1000	276 (200, 500 mA g ⁻¹)	2017 ¹⁹
				310	5000		
Flower-like	360	350	500	301	2000	—	2017^{20}
MoSe ₂ /C composite				266	4000		
MoSe ₂ @C@GR	367	200	200	320	2000	—	2017 ²¹
MoSe ₂ /N-C	334	500	500	248	2000		2017 ²²
nanosphere				180	5000		
MoSe ₂ @C	445	100	1000	367	5000	421 (100, 200 mA g ⁻¹)	20168
VG/MoSe ₂ /N-C	534	400	200	300	2000	—	2016 ²³
sandwiched arrays							
coaxial-cable	423	100	500	359	2000	—	2016 ²⁴
MoSe ₂ /C	395	100	1000				
composites							
MoSe ₂ nanosphere	345	200	42.2 (0.1	212	4223	—	2016 ²⁵
			C)				
C-MoSe ₂ /rGO	445	350	200	284	2000	_	2016 ²⁶
composite				228	4000		
F-MoSe ₂ /CNT	296	250	1000	280	3000	_	201627
composite balls				255	5000		
MoSe ₂ /CF	387	100	200	240	2000	—	2016 ²⁸

Table S2 A comparison of electrochemical performances of some previous reports aboutMoSe2-base anode materials with our results for SIBs in half-cell and full-cell

					162	5000		
MoSe ₂ /rG	iO	430	200	500	380	1000	_	20159
composite	e							
MoSe ₂ na	noplates	369	50	42.2 (0.1	250	4223 (10	_	201512
				C)		C)		
MoSe ₂ @N	MWCNT	459	90	200	385	2000		2015 ²⁹
MoSe ₂ @H	PHCS	580	100	200	400	1500		201530
MoSe ₂	yolk-shell	433	50	200	345	1500	_	2014 ³¹
microsphe	eres							

References

- Q. Su, X. Cao, X. Kong, Y. Wang, C. Peng, J. Chen, B. Yin, J. Shi, S. Liang and A. Pan, *Electrochimi. Acta*, 2018, 292, 339-346.
- Q. Gao, S. Wang, H. Fang, J. Weng, Y. Zhang, J. Mao and Y. Tang, J. Mater. Chem., 2012, 22, 4709.
- S. Zhuo, Y. Xu, W. Zhao, J. Zhang and B. Zhang, *Angew. Chem. Int. Ed. Engl.*, 2013, 52, 8602-8606.
- K. Zhu, X. Wang, J. Liu, S. Lo, H. Wang, L. Yang, S. Liu and T. Xie, ACS Sustain. Chem. Eng., 2017, 5, 8025-8034.
- 5. Z. Che, Y. Li, K. Chen and M. Wei, J. Power Sources, 2016, 331, 50-57.
- J. Chen, A. Pan, Y. Wang, X. Cao, W. Zhang, X. Kong, Q. Su, J. Lin, G. Cao and S. Liang, *Energy Storage Mater.*, 2018, DOI: 10.1016/j.ensm.2018.10.019.
- C. Dai, Z. Zhou, C. Tian, Y. Li, C. Yang, X. Gao and X. Tian, J. Phys. Chem. C, 2017, 121, 1974-1981.
- Y. Tang, Z. Zhao, Y. Wang, Y. Dong, Y. Liu, X. Wang and J. Qiu, ACS Appl. Mater. Inter., 2016, 8, 32324-32332.
- 9. Z. Zhang, Y. Fu, X. Yang, Y. Qu and Z. Zhang, ChemNanoMat, 2015, 1, 409-414.
- P. Ge, H. Hou, C. Banks, C. Foster, S. Li, Y. Zhang, J. He, C. Zhang and X. Ji, *Energy Storage Mater.*, 2018, **12**, 310-323.
- 11. Y. Liu, M. Zhu and D. Chen, J. Mater. Chem. A, 2015, 3, 11857-11862.
- H. Wang, X. Lan, D. Jiang, Y. Zhang, H. Zhong, Z. Zhang and Y. Jiang, J. Power Sources, 2015, 283, 187-194.

- Y. Wang, G. Xing, Z. Han, Y. Shi, J. Wong, Z. Huang, K. Ostrikov and H. Yang, Nanoscale, 2014, 6, 8884-8890.
- G. Fang, Z. Wu, J. Zhou, C. Zhu, X. Cao, T. Lin, Y. Chen, C. Wang, A. Pan and S. Liang, *Adv. Energy Mater.*, 2018, 8, 1703155.
- Y. Wang, Y. Zhang, J. shi, X. Kong, X. Cao, S. Liang, G. Cao and A. Pan, *Energy Storage Mater.*, 2019, 18, 366-374.
- M. Zhu, Z. Luo, A. Pan, H. Yang, T. Zhu, S. Liang and G. Cao, *Chem. Eng. J.*, 2018, 334, 2190-2200.
- 17. A. Roy, A. Ghosh, A. Kumar and S. Mitra, Inorg. Chem. Front., 2018, 5, 2189-2197.
- 18. G. Park, J. Kim, S. Park and Y. Kang, ACS Appl. Mater. Inter., 2017, 9, 10673-10683.
- F. Niu, J. Yang, N. Wang, D. Zhang, W. Fan, J. Yang and Y. Qian, *Adv. Funct. Mater.*, 2017, 27, 1700522.
- J. Li, H. Hu, F. Qin, P. Zhang, L. Zou, H. Wang, K. Zhang and Y. Lai, *Chem. Eur. J.*, 2017, 23, 14004-14010.
- C. Cui, G. Zhou, W. Wei, L. Chen, C. Li and J. Yue, J. Alloy Compd., 2017, 727, 1280-1287.
- 22. G. Jia, H. Wang, D. Chao, H. He, N. H. Tiep, Y. Zhang, Z. Zhang and H. J. Fan, *Nanotechnology*, 2017, 28, 42LT01.
- D. Xie, X. Xia, Y. Zhong, Y. Wang, D. Wang, X. Wang and J. Tu, *Adv. Energy Mater.*, 2016, 7, 1601804.
- 24. X. Yang, Z. Zhang and X. Shi, J. Alloy Compd., 2016, 686, 413-420.
- H. Wang, L. Wang, X. Wang, J. Quan, L. Mi, L. Yuan, G. Li, B. Zhang, H. Zhong and Y. Jiang, *J. Electrochem. Soc.*, 2016, 163, A1627-A1632.
- D. Xie, W. J. Tang, Y. D. Wang, X. H. Xia, Y. Zhong, D. Zhou, D. H. Wang, X. L. Wang and J. P. Tu, *Nano Res.*, 2016, 9, 1618-1629.
- 27. S. Choi and Y. Kang, Nanoscale, 2016, 8, 4209-4216.
- 28. Y. Zhang, Z. Liu, H. Zhao and Y. Du, RSC Adv., 2016, 6, 1440-1444.
- 29. Z. Zhang, X. Yang, Y. Fu and K. Du, J. Power Sources, 2015, 296, 2-9.
- 30. X. Yang, Z. Zhang, Y. Fu and Q. Li, Nanoscale, 2015, 7, 10198-10203.
- 31. Y. Ko, S. Choi, S. Park and Y. Kang, Nanoscale, 2014, 6, 10511-10515.