Supporting Information

Enhancing the separation efficiency of C_2H_2/C_2H_4 mixture by a chromium Metal-Organic Framework fabricated via post-synthetic metalation

Fan Yu^a,* Bing-Qian Hu,^a Xiao-Ning Wang,^b Yu-Meng Zhao,^b Jia-Luo Li^c, Bao Li ^{b,*} and Hong-Cai Zhou^{c,*}

a. Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Chemical and Environmental Engineering Jianghan University, Wuhan, 430056, PR China.

^{b.} Key laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China.

^{c.} Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States.

*E-mails: yufan0714@163.com;libao@hust.edu.cn; zhou@chem.tamu.edu

Contents

Experimental Section	4
Table S1 Crystal data of HUST-5	8
Table S2 Selected Bond Lengths for HUST-5	8
Figure S1. The asymmetric unit of HUST-5	10
Figure S2. Pore size distribution curves obtained by the Horvath-Kawazoe method for HUST-5 and HUST-6	10
Figure S3. Pore size distribution curves obtained by the Horvath-Kawazoe method for HUST-5 and HUST-6	10
Figure S4. Enlarged CO_2 , CH_4 and C_2H_x sorption isotherms for HUST-6	11
Figure S5. Enlarged IAST adsorption selectivities for HUST-5 of equimolar C_2H_2/C_2H_x and C_2H_2/CO_2 mixtures	11
Figure S6. Enlarged IAST adsorption selectivities for HUST-6 of equimolar C_2H_2/C_2H_x and C_2H_2/CO_2 mixtures	12
Figure S7. TGA curves of pristine HUST-5, as-synthesized HUST-6 and HUST-6 immersed in water	12
Figure S8. XRD pattern of HUST-5 under different conditions	13
Figure S9. XRD pattern of HUST-6 under different conditions	13
Figure S10. N_2 sorption isotherms for activated HUST-5, HUST-6 and HUST-6 immersed in 2M HCl at 77K	after
vacuum-drying at 150 °C overnight	13
Fig. S11 The CO_2 fit isotherms of HUST-5 at 273 K and 298 K by virial equation	14
Fig. S12 The C_2H_6 fit isotherms of HUST-5 at 273 K and 298 K by virial equation	14
Fig. S13 The C_2H_4 fit isotherms of HUST-5 at 273 K and 298 K by virial equation	15
Fig. S14 The C_2H_2 fit isotherms of HUST-5 at 273 K and 298 K by virial equation	15
Fig. S15 The CO_2 fit isotherms of HUST-6 at 273 K and 298 K by virial equation	15
Fig. S16 The C_2H_6 fit isotherms of HUST-6 at 273 K and 298 K by virial equation	16
Fig. S17 The C_2H_4 fit isotherms of HUST-6 at 273 K and 298 K by virial equation	16
Fig. S18 The C_2H_2 fit isotherms of HUST-6 at 273 K and 298 K by virial equation	17
Figure S19. Photo images of HUST-5 and HUST-6	17
Scheme S1. The simplified ligand in the theoretical calculation model, named as 4,4',4"-((6,6-dihyd	droxy-
1,3,5,2I5,4I5,6I5-triazatriphosphinine-2,2,4,4-tetrayl)tetrakis(oxy))tetrabenzoic acid (L2)	17
Figure S20. relaxed structure of $(M_3O)_2(H_2O)_4(HCOO)(L2)_4$ (M= Fe(a), Cr(b))	18
Figure S21. HOMO (a) and LUMO(b) of hexa-nuclear chromium cluster.	18

Experimental Section

Materials and methods.

All starting chemicals were purchased from commercial sources and were used without further purification. The starting materials, tri-nuclear Fe₃O and hexa-carboxyl ligands, had been synthesized according to the references.^[1,2]

Elemental analyses (C, H and N) were determined on a Perkin-Elmer 2400 analyzer. Thermogravimetric analysis (TGA) was performed on a Perkin-Elmer TG-7 analyzer heated from 25 to 800 °C under nitrogen atmosphere. Powder Xray diffraction (PXRD) patterns for the as-synthesized samples were recorded on a X-ray diffraction meter (D/max 2500 PC, Rigaku) with Cu-Ka radiation (1.5406 Å). N₂ adsorption-desorption isotherms were measured using a Micromeritics ASAP 2020 system at 77 K for all of the samples that have been immersed in acetone for three days and activated at 120 °C for 10h. The morphologies of the hierarchical derivatives were observed by using a SU8020 Scanning Electron Microscope (SEM, Hitachi, Japan). Energy dispersive X-ray spectra (EDS) of different elements in different samples was recorded via SEM. spectroscopy photoelectron (XPS) X-ray was carried out on а VGESCALBMKII X-ray photoelectron system with an Al Ka radiation (1486.6 eV).

Syntheses of HUST-5

Solid Fe₃O material (0.038 g) and hexa-carboxyl ligand (0.040g) was added to 12 mL DMF and the solution was stirred for 5 min, and then added 3.2 ml acetate acid. The mixture was sealed in a 25 mL stainless steel reactor and heated to 150 °C within 3 days, and then cooled to 30 °C within 500 min. Red block crystals of HUST-5 were obtained by filtration. Yield: ~43% based on ligands. Elemental analysis calcd (%) for desolvent sample $C_{85}H_{57}Fe_6N_6O_{44}P_6$: C 42.76, H 2.41, N 3.52. Found: C 43.40, H 2.85, N 4.06.

Syntheses of HUST-6

100mg $CrCl_3 \cdot 6H_2O$ was dissolved in acetone 20 mL. Then 30mg solid crystal sample of HUST-5 had been immersed in 5 mL acetone solutions at 60°C. The solution had been changed after 24 h. After three days, green samples had been filtered and washed with acetone for three times.

Syntheses of HUST-5 with FeCl₂

FeCl₂·4H₂O (0.18 mmol, 36 mg) and H₆L (0.042 mmol, 40 mg) were ultrasonically dissolved in 12 mL DMF and 1 mL H₂O, and formic acid (1.6 mL) was then added to the solution in a 20 mL glass vial. The vial was then heated at 120 °C for 5 days in an oven. After cooling to room temperature, the red block crystals were harvested by filtration and washed with DMF. The yield was 48% for HUST-5 (based on H₆L ligand).

Pure gas adsorption

Gas sorption isotherms were performed on Micromeritics (3FLEX) aparatus. Prior to gas measurement, the dichloromethane-exchanged samples were degassed at 80°C under dynamic vacuum for 48h.

Breakthrough tests

The breakthrough experiments were carried out in homemade dynamic gas breakthrough equipment. A stainless steel column (4.6 mm inner diameter \times 50 mm) packed with 0.835 g activated **NbU-1** powder was firstly purged with He flow (5 ml min⁻¹) for 1 h at 293K. The mixed C₂H₂/C₂H₄ gas (50/50, v/v) flow was introduced at 2.0 ml min⁻¹, another mixed C₂H₂/C₂H₄ gas (1/99, v/v) flow was introduced at 1.0 ml min⁻¹. The relative amounts of the gases passing through the column were monitored using gas chromatography (Agilent 7890B) with a thermal conductivity detector (TCD) once every 30 seconds, after 180 minutes, the test becomes to once every 5 minutes. After every separation experiment, the adsorption bed was regenerated by heating at 50°C under vacuum conditions for 2 hours. The transient breakthrough simulation results are presented in terms of a dimensionless time, τ_{break} , defined by dividing the actual time, t, by the characteristic time, $L\varepsilon u^{-1}(L)$ length of packed bed; ε :voidage of packed bed, u:superficial gas velocity at inlet).

IAST adsorption selectivity calculation:

The experimental isotherm data for pure C_2H_2 , C_2H_4 , C_2H_6 , and CH_4 (measured at 273 K) were fitted using a Langmuir-Freundlich (L-F) model:

$$q = \frac{a * b * p^c}{1 + b * P^c}$$

Where q and p are adsorbed amounts and pressures of component i, respectively. Using the pure component isotherm fits, the adsorption selectivity is defined by

$$S_{ads} = \frac{\frac{q_1}{q_2}}{\frac{p_1}{p_2}}$$

Where q_i is the amount of *i* adsorbed and p_i is the partial pressure of i in the mixture. We used the following written codes to simulate the adsorption selectivity of C_2H_2/C_2H_4 in Fig. 6:

28	# No. of Pressure Point
y1, y2	# Molar fraction of binary mixture (y1 and y2, $y1 + y2 = 1$)
1, 2, 3, 4, 5, 6	5, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 101, 102, 103, 104, 105, 106, 107,
108, 109	#The unit is same parameter b, kPa
a1, a2	# fitting parameter Nsat (A1) for both component (Unit: mmol/g)
b1, b2	# fitting parameter b1 for both components (Unit: kPa ⁻¹)
c1, c2	# fitting parameter c1 for both components
0, 0	# fitting parameter Nsat2(A2) for both component(Unit: mmol/g)
0, 0	# fitting parameter b2 for both components (Unit: kPa ⁻¹)
1, 1	# fitting parameter c2 for both components

X-Ray Structural Determination. Diffraction data for HUST-5 ($0.1 \times 0.05 \times 0.05$ mm) was collected via Bruker Venture using Cu-*Ka* ($\lambda = 1.54178$ Å) radiation at 100

K. The structures of complexes were solved by direct methods, and the non-hydrogen atoms were located from the trial structure and then refined anisotropically with SHELXTL using a full-matrix leastsquares procedure based on F^2 values. The hydrogen atom positions were fixed geometrically at calculated distances and allowed to ride on the parent atoms. Attempts to define the highly disordered solvent molecules were unsuccessful, so the structure was refined with the PLATON "SQUEEZE" procedure. The diffraction intensity of crystal sample was very weak due to the very small size and low density, which must be responsible for the corresponding alert A. CCDC-1913173 for the data under different temperature contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/datarequest/cif.

Computational Detail

Spin polarized Density functional theory calculations were performed by using DMol3 software in the Material Studio module^[3]. Perdew–Burke–Ernzerhof (PBE) functional with generalized gradient approximation (GGA) ^[4] was used to describe exchange-correlation (XC) effects was treated by. All electron numerical basis set of double numerical plus polarization (DNP) ^[5] were used to expand electronic wave function. For Fe or Cr ions, the Effective Core Potentials (ECP) ^[6] replaces core electrons by a single effective potential, and valence electrons were described by DNP numerical basic set. DFT-D corrections with Grimme method ^[3] was used to the treatment of weak dispersion energy. In the optimization calculation, 2.0×10^{-5} Ha and 2.0×10^{-3} Ha. Å⁻¹ were set as the convergence value of energy and force, and the threshold for SCF density convergence was 1.0×10^{-6} . Hirshfeld charge population analysis and frontier molecular orbital analysis were further performed.

Owing to the restriction of huge computational cost and theoretical method, it is very different to perform the simulation toward the whole MOF framework. Inspecting the microscopic structure, $(M_3O)_2(H_2O)_4(HCOO)(L2)_4$ unit, dominating properties of MOFs, was regarded as computational model. The original hexa-carboxyl ligands L1 had been simplified as tetra-carboxy ligand as L2, labeled as

4,4',4",4"'-((6,6-dihydroxy-1,3,5,215,415,615-triazatriphosphinine-2,2,4,4-tetrayl) tetrakis(oxy))tetrabenzoic acid, scheme S1). The terminal atoms of the model were saturated by additional hydrogen atoms. Adsorption energy were typically calculated based following formula: $E_a(X) = E(X - MOF) - E(MOF) - E(X)(X = C_2H_2, C_2H_4)$, where E(X - MOF), E(MOF) and E(X) were single-point energy of relaxed geometry of X-MOF, MOF and X with the same computational setting. Meanwhile, dissociation energy of aqua ligand was evaluated according to this formula: $E_d = E(H_2O) + E(Cr-MOF-H_2O) - E(Cr-MOF)$, where E(Cr-MOF), $E(Cr-MOF-H_2O)$ and $E(H_2O)$ were single-point energy of relaxed structure of original Cr-MOF, H₂O-removed Cr-MOF and H₂O with the same computational setting.

Empirical formula	$C_{85}H_{57}Fe_6N_6O_{44}P_6$
Formula weight	2387.29
Crystal system	monoclinic
Space group	<i>C</i> 2
a/Å	27.9272(17)
b/Å	20.8710(17)
c/Å	35.446(3)
$\alpha/^{\circ}$	90
β/°	93.965(6)
$\gamma/^{\circ}$	90
Volume/Å ³	20611(3)
Ζ	4
$\rho_{calc}g/cm^3$	0.769
μ/mm^{-1}	4.141
F(000)	10272.0
Goodness-of-fit on F ²	1.047
Final R indexes [1>-2a (1)]	$R_1 = 0.1025, wR_2 =$
$\frac{1}{1} = \frac{1}{20} (1)$	0.2501
Final R indexes [all data]	$R_1 = 0.1379, wR_2 =$
i mai it maexes [an data]	0.2706
Largest diff. peak/hole / e Å ⁻ ³	0.66/-0.61
Flack parameter	0.271(6)

Table S1 Crystal data of HUST-5

Atom AtomLength/ÅAtom AtomLength/ÅFe1O22.060(9)O21Fe62.082(9)Fe1O411.969(10)O40Fe32.066(12)Fe1O241.971(9)O20Fe51.945(10)Fe1O41.965(10)O28Fe531.990(9)Fe1O381.978(9)O26Fe632.025(9)Fe1O712.040(11)C60C591.439(11)O11Fe422.030(8)O42Fe62.080(13)O8Fe221.976(10)O30Fe641.936(10)O44Fe51.891(11)O12Fe621.977(9)O44Fe61.935(9)O3Fe31.984(9)O44Fe61.935(9)O3Fe31.934(10)O41Fe21.944(10)O9Fe322.037(9)O41Fe31.849(10)O6Fe352.010(11)O10Fe221.968(10)Fe2O811.976(10)O22Fe52.008(10)Fe2O552.036(10)O11Fe21.960(9)Fe3O912.037(9)O1Fe21.960(9)Fe3O252.043(10)O25Fe432.051(12)Fe5O2871.990(9)O43Fe52.061(10)Fe4O2171.991(8)Fe6O3061.936(10)Fe4O2771.991(8)Fe6O3061.936(10)Fe4O2772.051(12)Fe6 <th></th> <th></th> <th></th> <th></th> <th></th>					
Fe1O22.060(9)O21Fe62.082(9)Fe1O411.969(10)O40Fe32.066(12)Fe1O241.971(9)O20Fe51.945(10)Fe1O41.965(10)O28Fe531.990(9)Fe1O381.978(9)O26Fe632.025(9)Fe1O712.040(11)C60C591.439(11)O11Fe422.030(8)O42Fe62.080(13)O8Fe221.976(10)O30Fe641.936(10)O44Fe51.891(11)O12Fe621.977(9)O44Fe61.935(9)O3Fe31.984(9)O41Fe21.944(10)O9Fe322.037(9)O41Fe31.849(10)O6Fe352.010(11)O10Fe221.968(10)Fe2O811.976(10)O22Fe52.008(10)Fe3O912.037(9)O1Fe21.960(9)Fe3O52.036(10)O19Fe42.008(10)Fe3O912.037(9)O1Fe21.960(9)Fe3O652.010(11)O25Fe432.051(12)Fe5O2871.990(9)O43Fe52.061(10)Fe4O2771.991(8)Fe6O3061.936(10)Fe4O2771.991(8)Fe6O3061.936(10)Fe4O2572.051(12)Fe6O1211.977(9)Fe6O2672.025(9) <t< th=""><th>Atom.</th><th>Atom</th><th>Length/Å</th><th>Atom Atom</th><th>Length/Å</th></t<>	Atom.	Atom	Length/Å	Atom Atom	Length/Å
Fe1O411.969(10)O40Fe32.066(12)Fe1O241.971(9)O20Fe51.945(10)Fe1O41.965(10)O28Fe531.990(9)Fe1O381.978(9)O26Fe632.025(9)Fe1O712.040(11)C60C591.439(11)O11Fe422.030(8)O42Fe62.080(13)O8Fe221.976(10)O30Fe641.936(10)O44Fe51.891(11)O12Fe621.977(9)O44Fe41.919(9)O23Fe31.984(9)O44Fe61.935(9)O3Fe31.934(10)O41Fe21.944(10)O9Fe322.037(9)O41Fe31.849(10)O6Fe352.010(11)O10Fe221.968(10)Fe2O811.976(10)O27Fe431.991(8)Fe2O1011.968(10)O22Fe52.008(10)Fe3O912.037(9)O1Fe21.960(9)Fe3O652.010(11)O29Fe542.043(10)Fe5O2871.990(9)O43Fe52.061(10)Fe4O1112.030(8)O5Fe252.036(10)Fe4O2771.991(8)Fe6O3061.936(10)Fe4O2772.051(12)Fe6O1211.977(9)Fe6O2672.025(9)O7Fe122.040(11)Fe4O2572.051(12)	Fe1	02	2.060(9)	O21 Fe6	2.082(9)
Fe1 $O24$ $1.971(9)$ $O20$ Fe5 $1.945(10)$ Fe1 $O4$ $1.965(10)$ $O28$ Fe53 $1.990(9)$ Fe1 $O38$ $1.978(9)$ $O26$ Fe63 $2.025(9)$ Fe1 $O7^1$ $2.040(11)$ $C60$ $C59$ $1.439(11)$ $O11$ $Fe4^2$ $2.030(8)$ $O42$ Fe6 $2.080(13)$ $O8$ $Fe2^2$ $1.976(10)$ $O30$ $Fe6^4$ $1.936(10)$ $O44$ Fe5 $1.891(11)$ $O12$ $Fe6^2$ $1.977(9)$ $O44$ Fe4 $1.919(9)$ $O23$ Fe3 $1.984(9)$ $O44$ Fe6 $1.935(9)$ $O3$ Fe3 $1.934(10)$ $O41$ Fe2 $1.944(10)$ $O9$ Fe32 $2.037(9)$ $O41$ Fe3 $1.849(10)$ $O6$ Fe3^5 $2.010(11)$ $O10$ Fe22 $1.968(10)$ Fe2 $O8^1$ $1.976(10)$ $O22$ Fe5 $2.008(10)$ Fe2 $O10^1$ $1.968(10)$ $O23$ Fe3 $1.991(8)$ Fe2 $O10^1$ $1.968(10)$ $O25$ Fe4 $2.008(10)$ Fe3 $O9^1$ $2.037(9)$ $O1$ Fe2 $1.960(9)$ Fe3 $O6^5$ $2.010(11)$ $O29$ Fe54 $2.043(10)$ Fe5 $O28^7$ $1.990(9)$ $O43$ Fe5 $2.061(10)$ Fe4 $O27^7$ $1.991(8)$ Fe6 $O30^6$ $1.936(10)$ Fe4 $O27^7$ $1.991(8)$ Fe6 $O12^1$ $1.977(9)$ Fe6 $O26^7$ $2.025(9)$ <	Fe1	O41	1.969(10)	O40 Fe3	2.066(12)
Fe1O4 $1.965(10)$ O28Fe53 $1.990(9)$ Fe1O38 $1.978(9)$ O26Fe63 $2.025(9)$ Fe1O71 $2.040(11)$ C60C59 $1.439(11)$ O11Fe42 $2.030(8)$ O42Fe6 $2.080(13)$ O8Fe22 $1.976(10)$ O30Fe64 $1.936(10)$ O44Fe5 $1.891(11)$ O12Fe62 $1.977(9)$ O44Fe4 $1.919(9)$ O23Fe3 $1.984(9)$ O44Fe6 $1.935(9)$ O3Fe3 $1.934(10)$ O41Fe2 $1.944(10)$ O9Fe32 $2.037(9)$ O41Fe3 $1.849(10)$ O6Fe35 $2.010(11)$ O10Fe22 $1.968(10)$ Fe2O11 $1.976(10)$ O22Fe5 $2.008(10)$ Fe2O55 $2.036(10)$ O13Fe4 $2.008(10)$ Fe3O91 $2.037(9)$ O14Fe2 $1.960(9)$ Fe3O65 $2.010(11)$ O29Fe54 $2.008(10)$ Fe3O91 $2.037(9)$ O1Fe2 $1.960(9)$ Fe3O65 $2.010(11)$ O29Fe54 $2.0043(10)$ Fe5O296 $2.043(10)$ O25Fe43 $2.051(12)$ Fe5O287 $1.990(9)$ O43Fe5 $2.061(10)$ Fe4O277 $1.991(8)$ Fe6O306 $1.936(10)$ Fe4O257 $2.051(12)$ Fe6O121 $1.977(9)$ Fe6O267 $2.025(9)$ <tr< td=""><td>Fe1</td><td>O24</td><td>1.971(9)</td><td>O20 Fe5</td><td>1.945(10)</td></tr<>	Fe1	O24	1.971(9)	O20 Fe5	1.945(10)
Fe1O38 $1.978(9)$ O26Fe63 $2.025(9)$ Fe1O71 $2.040(11)$ C60C59 $1.439(11)$ O11Fe42 $2.030(8)$ O42Fe6 $2.080(13)$ O8Fe22 $1.976(10)$ O30Fe64 $1.936(10)$ O44Fe5 $1.891(11)$ O12Fe62 $1.977(9)$ O44Fe4 $1.919(9)$ O23Fe3 $1.984(9)$ O44Fe6 $1.935(9)$ O3Fe3 $1.934(10)$ O41Fe2 $1.944(10)$ O9Fe32 $2.037(9)$ O41Fe3 $1.849(10)$ O6Fe35 $2.010(11)$ O10Fe22 $1.968(10)$ Fe2O81 $1.976(10)$ O27Fe43 $1.991(8)$ Fe2O101 $1.968(10)$ O25Fe5 $2.008(10)$ Fe3 $O9^{-1}$ $2.037(9)$ O1Fe2 $1.960(9)$ Fe3O65 $2.010(11)$ O29Fe54 $2.008(10)$ Fe3O65 $2.010(11)$ O25Fe43 $2.051(12)$ Fe5O287 $1.990(9)$ O43Fe5 $2.061(10)$ Fe4O217 $1.991(8)$ Fe6O306 $1.936(10)$ Fe4O257 $2.051(12)$ Fe6O121 $1.977(9)$ Fe6O267 $2.025(9)$ O7Fe12 $2.040(11)$ 5.0267 $2.025(9)$	Fe1	04	1.965(10)	O28 Fe5 ³	1.990(9)
Fe1 $O7^1$ 2.040(11)C60C591.439(11)O11Fe4²2.030(8)O42Fe62.080(13)O8Fe2²1.976(10)O30Fe641.936(10)O44Fe51.891(11)O12Fe6²1.977(9)O44Fe41.919(9)O23Fe31.984(9)O44Fe61.935(9)O3Fe31.934(10)O41Fe21.944(10)O9Fe3²2.037(9)O41Fe31.849(10)O6Fe3⁵2.010(11)O10Fe2²1.968(10)Fe2O8¹1.976(10)O27Fe4³1.991(8)Fe2O10¹1.968(10)O22Fe52.008(10)Fe3O9¹2.037(9)O1Fe21.960(9)Fe3O6⁵2.010(11)O29Fe542.003(10)Fe5O2871.990(9)O43Fe52.061(10)Fe4O11¹2.030(8)O5Fe2⁵2.036(10)Fe4O2771.991(8)Fe6O30⁶1.936(10)Fe4O2572.051(12)Fe6O12¹1.977(9)Fe6O2672.025(9)O7Fe1²2.040(11)C572.025(9)	Fe1	O38	1.978(9)	O26 Fe6 ³	2.025(9)
O11 $Fe4^2$ 2.030(8)O42 $Fe6$ 2.080(13)O8 $Fe2^2$ 1.976(10)O30 $Fe6^4$ 1.936(10)O44 $Fe5$ 1.891(11)O12 $Fe6^2$ 1.977(9)O44 $Fe4$ 1.919(9)O23 $Fe3$ 1.984(9)O44 $Fe6$ 1.935(9)O3 $Fe3$ 1.934(10)O41 $Fe2$ 1.944(10)O9 $Fe3^2$ 2.037(9)O41 $Fe3$ 1.849(10)O6 $Fe3^5$ 2.010(11)O10 $Fe2^2$ 1.968(10) $Fe2$ O8 ¹ 1.976(10)O27 $Fe4^3$ 1.991(8) $Fe2$ O10 ¹ 1.968(10)O22 $Fe5$ 2.008(10) $Fe2$ O5 ⁵ 2.036(10)O19 $Fe4$ 2.008(10) $Fe3$ O6 ⁵ 2.010(11)O29 $Fe5^4$ 2.043(10) $Fe5$ O29 ⁶ 2.043(10)O25 $Fe4^3$ 2.051(12) $Fe5$ O28 ⁷ 1.990(9)O43 $Fe5$ 2.061(10) $Fe4$ O11 ¹ 2.030(8)O5 $Fe2^5$ 2.036(10) $Fe4$ O27 ⁷ 1.991(8)Fe6O30 ⁶ 1.936(10) $Fe4$ O25 ⁷ 2.051(12)Fe6O12 ¹ 1.977(9) $Fe6$ O26 ⁷ 2.025(9)O7 $Fe1^2$ 2.040(11) $Fe6$ O26 ⁷ 2.025(9)	Fe1	O71	2.040(11)	C60 C59	1.439(11)
$O8$ $Fe2^2$ $1.976(10)$ $O30$ $Fe6^4$ $1.936(10)$ $O44$ $Fe5$ $1.891(11)$ $O12$ $Fe6^2$ $1.977(9)$ $O44$ $Fe4$ $1.919(9)$ $O23$ $Fe3$ $1.984(9)$ $O44$ $Fe6$ $1.935(9)$ $O3$ $Fe3$ $1.934(10)$ $O41$ $Fe2$ $1.944(10)$ $O9$ $Fe3^2$ $2.037(9)$ $O41$ $Fe3$ $1.849(10)$ $O6$ $Fe3^5$ $2.010(11)$ $O10$ $Fe2^2$ $1.968(10)$ $Fe2$ $O8^1$ $1.976(10)$ $O27$ $Fe4^3$ $1.991(8)$ $Fe2$ $O10^1$ $1.968(10)$ $O22$ $Fe5$ $2.008(10)$ $Fe3$ $O9^1$ $2.037(9)$ $O1$ $Fe2$ $1.960(9)$ $Fe3$ $O6^5$ $2.010(11)$ $O29$ $Fe5^4$ $2.043(10)$ $Fe5$ $O29^6$ $2.043(10)$ $O25$ $Fe4^3$ $2.051(12)$ $Fe5$ $O28^7$ $1.990(9)$ $O43$ $Fe5$ $2.061(10)$ $Fe4$ $O11^1$ $2.030(8)$ $O5$ $Fe2^5$ $2.036(10)$ $Fe4$ $O25^7$ $2.051(12)$ $Fe6$ $O30^6$ $1.936(10)$ $Fe4$ $O25^7$ $2.051(12)$ $Fe6$ $O12^1$ $1.977(9)$ $Fe6$ $O26^7$ $2.025(9)$ $O7$ $Fe1^2$ $2.040(11)$ $O26^7$ $2.025(9)$	011	Fe4 ²	2.030(8)	O42 Fe6	2.080(13)
$O44$ Fe5 $1.891(11)$ $O12$ Fe62 $1.977(9)$ $O44$ Fe4 $1.919(9)$ $O23$ Fe3 $1.984(9)$ $O44$ Fe6 $1.935(9)$ $O3$ Fe3 $1.934(10)$ $O41$ Fe2 $1.944(10)$ $O9$ Fe32 $2.037(9)$ $O41$ Fe3 $1.849(10)$ $O6$ Fe35 $2.010(11)$ $O10$ Fe2 $1.968(10)$ Fe2 $O8^1$ $1.976(10)$ $O27$ Fe43 $1.991(8)$ Fe2 $O10^1$ $1.968(10)$ $O22$ Fe5 $2.008(10)$ Fe2 $O5^5$ $2.036(10)$ $O19$ Fe4 $2.008(10)$ Fe3 $O9^1$ $2.037(9)$ $O1$ Fe2 $1.960(9)$ Fe3 $O6^5$ $2.010(11)$ $O29$ Fe54 $2.001(1)$ Fe5 $O28^7$ $1.990(9)$ $O43$ Fe5 $2.061(10)$ Fe4 $O11^1$ $2.030(8)$ $O5$ Fe2 ⁵ $2.036(10)$ Fe4 $O27^7$ $1.991(8)$ Fe6 $O30^6$ $1.936(10)$ Fe4 $O25^7$ $2.051(12)$ Fe6 $O12^1$ $1.977(9)$ Fe6 $O26^7$ $2.025(9)$ $O7$ Fe1^2 $2.040(11)$ $V11$ $V11$ $V11$	08	Fe2 ²	1.976(10)	O30 Fe6 ⁴	1.936(10)
$O44$ Fe4 $1.919(9)$ $O23$ Fe3 $1.984(9)$ $O44$ Fe6 $1.935(9)$ $O3$ Fe3 $1.934(10)$ $O41$ Fe2 $1.944(10)$ $O9$ Fe3 ² $2.037(9)$ $O41$ Fe3 $1.849(10)$ $O6$ Fe3 ⁵ $2.010(11)$ $O10$ Fe2 ² $1.968(10)$ Fe2 $O8^1$ $1.976(10)$ $O27$ Fe4 ³ $1.991(8)$ Fe2 $O10^1$ $1.968(10)$ $O22$ Fe5 $2.008(10)$ Fe2 $O5^5$ $2.036(10)$ $O19$ Fe4 $2.008(10)$ Fe3 $O9^1$ $2.037(9)$ $O1$ Fe2 $1.960(9)$ Fe3 $O6^5$ $2.010(11)$ $O29$ Fe5 ⁴ $2.043(10)$ Fe5 $O29^6$ $2.043(10)$ $O25$ Fe4 ³ $2.051(12)$ Fe5 $O28^7$ $1.990(9)$ $O43$ Fe5 $2.061(10)$ Fe4 $O11^1$ $2.030(8)$ $O5$ Fe2 ⁵ $2.036(10)$ Fe4 $O27^7$ $1.991(8)$ Fe6 $O30^6$ $1.936(10)$ Fe4 $O25^7$ $2.051(12)$ Fe6 $O12^1$ $1.977(9)$ Fe6 $O26^7$ $2.025(9)$ $O7$ Fe1 ² $2.040(11)$ $O28$ $O26^7$ $O257(9)$	O44	Fe5	1.891(11)	O12 Fe6 ²	1.977(9)
$O44$ Fe6 $1.935(9)$ $O3$ Fe3 $1.934(10)$ $O41$ Fe2 $1.944(10)$ $O9$ Fe3 ² $2.037(9)$ $O41$ Fe3 $1.849(10)$ $O6$ Fe3 ⁵ $2.010(11)$ $O10$ Fe2 ² $1.968(10)$ Fe2 $O8^1$ $1.976(10)$ $O27$ Fe4 ³ $1.991(8)$ Fe2 $O10^1$ $1.968(10)$ $O22$ Fe5 $2.008(10)$ Fe2 $O5^5$ $2.036(10)$ $O19$ Fe4 $2.008(10)$ Fe3 $O9^1$ $2.037(9)$ $O1$ Fe2 $1.960(9)$ Fe3 $O6^5$ $2.010(11)$ $O29$ Fe5 ⁴ $2.043(10)$ Fe5 $O29^6$ $2.043(10)$ $O25$ Fe4 ³ $2.051(12)$ Fe5 $O28^7$ $1.990(9)$ $O43$ Fe5 $2.061(10)$ Fe4 $O11^1$ $2.030(8)$ $O5$ Fe2 ⁵ $2.036(10)$ Fe4 $O25^7$ $2.051(12)$ Fe6 $O30^6$ $1.936(10)$ Fe4 $O25^7$ $2.025(9)$ $O7$ Fe1 ² $2.040(11)$ V V	O44	Fe4	1.919(9)	O23 Fe3	1.984(9)
$O41$ Fe2 $1.944(10)$ O9Fe32 $2.037(9)$ $O41$ Fe3 $1.849(10)$ O6Fe35 $2.010(11)$ $O10$ Fe2 $1.968(10)$ Fe2 $O8^1$ $1.976(10)$ $O27$ Fe43 $1.991(8)$ Fe2 $O10^1$ $1.968(10)$ $O22$ Fe5 $2.008(10)$ Fe2 $O5^5$ $2.036(10)$ $O19$ Fe4 $2.008(10)$ Fe3 $O9^1$ $2.037(9)$ $O1$ Fe2 $1.960(9)$ Fe3 $O6^5$ $2.010(11)$ $O29$ Fe5 ⁴ $2.043(10)$ Fe5 $O29^6$ $2.043(10)$ $O25$ Fe4 ³ $2.051(12)$ Fe5 $O28^7$ $1.990(9)$ $O43$ Fe5 $2.061(10)$ Fe4 $O11^1$ $2.030(8)$ $O5$ Fe2 ⁵ $2.036(10)$ Fe4 $O25^7$ $2.051(12)$ Fe6 $O30^6$ $1.936(10)$ Fe4 $O25^7$ $2.051(12)$ Fe6 $O12^1$ $1.977(9)$ Fe6 $O26^7$ $2.025(9)$ $O7$ Fe1 ² $2.040(11)$ $V11$ $V11$ $V11$	O44	Fe6	1.935(9)	O3 Fe3	1.934(10)
$O41$ Fe3 $1.849(10)$ $O6$ $Fe3^5$ $2.010(11)$ $O10$ $Fe2^2$ $1.968(10)$ $Fe2$ $O8^1$ $1.976(10)$ $O27$ $Fe4^3$ $1.991(8)$ $Fe2$ $O10^1$ $1.968(10)$ $O22$ $Fe5$ $2.008(10)$ $Fe2$ $O5^5$ $2.036(10)$ $O19$ $Fe4$ $2.008(10)$ $Fe3$ $O9^1$ $2.037(9)$ $O1$ $Fe2$ $1.960(9)$ $Fe3$ $O6^5$ $2.010(11)$ $O29$ $Fe5^4$ $2.043(10)$ $Fe5$ $O29^6$ $2.043(10)$ $O25$ $Fe4^3$ $2.051(12)$ $Fe5$ $O28^7$ $1.990(9)$ $O43$ $Fe5$ $2.061(10)$ $Fe4$ $O11^1$ $2.030(8)$ $O5$ $Fe2^5$ $2.036(10)$ $Fe4$ $O25^7$ $2.051(12)$ $Fe6$ $O30^6$ $1.936(10)$ $Fe4$ $O25^7$ $2.051(12)$ $Fe6$ $O12^1$ $1.977(9)$ $Fe6$ $O26^7$ $2.025(9)$ $O7$ $Fe1^2$ $2.040(11)$ $O10$ $O26^7$ $O257^7$	O41	Fe2	1.944(10)	O9 Fe3 ²	2.037(9)
O10 $Fe2^2$ $1.968(10)$ $Fe2$ $O8^1$ $1.976(10)$ O27 $Fe4^3$ $1.991(8)$ $Fe2$ $O10^1$ $1.968(10)$ O22 $Fe5$ $2.008(10)$ $Fe2$ $O5^5$ $2.036(10)$ O19 $Fe4$ $2.008(10)$ $Fe3$ $O9^1$ $2.037(9)$ O1 $Fe2$ $1.960(9)$ $Fe3$ $O6^5$ $2.010(11)$ O29 $Fe5^4$ $2.043(10)$ $Fe5$ $O29^6$ $2.043(10)$ O25 $Fe4^3$ $2.051(12)$ $Fe5$ $O28^7$ $1.990(9)$ O43 $Fe5$ $2.061(10)$ $Fe4$ $O11^1$ $2.030(8)$ O5 $Fe2^5$ $2.036(10)$ $Fe4$ $O27^7$ $1.991(8)$ Fe6 $O30^6$ $1.936(10)$ $Fe4$ $O25^7$ $2.051(12)$ Fe6 $O12^1$ $1.977(9)$ $Fe6$ $O26^7$ $2.025(9)$ O7 $Fe1^2$ $2.040(11)$ $Se1^2$ $Se1^2$ $Se1^2$	O41	Fe3	1.849(10)	O6 Fe3 ⁵	2.010(11)
$O27$ $Fe4^3$ $1.991(8)$ $Fe2$ $O10^1$ $1.968(10)$ $O22$ $Fe5$ $2.008(10)$ $Fe2$ $O5^5$ $2.036(10)$ $O19$ $Fe4$ $2.008(10)$ $Fe3$ $O9^1$ $2.037(9)$ $O1$ $Fe2$ $1.960(9)$ $Fe3$ $O6^5$ $2.010(11)$ $O29$ $Fe5^4$ $2.043(10)$ $Fe5$ $O29^6$ $2.043(10)$ $O25$ $Fe4^3$ $2.051(12)$ $Fe5$ $O28^7$ $1.990(9)$ $O43$ $Fe5$ $2.061(10)$ $Fe4$ $O11^1$ $2.030(8)$ $O5$ $Fe2^5$ $2.036(10)$ $Fe4$ $O27^7$ $1.991(8)$ $Fe6$ $O30^6$ $1.936(10)$ $Fe4$ $O25^7$ $2.051(12)$ $Fe6$ $O12^1$ $1.977(9)$ $Fe6$ $O26^7$ $2.025(9)$ $O7$ $Fe1^2$ $2.040(11)$ $O10^1$ $O10^1$ $O10^1$	O10	Fe2 ²	1.968(10)	Fe2 O81	1.976(10)
$O22$ Fe5 $2.008(10)$ Fe2 $O5^5$ $2.036(10)$ $O19$ Fe4 $2.008(10)$ Fe3 $O9^1$ $2.037(9)$ $O1$ Fe2 $1.960(9)$ Fe3 $O6^5$ $2.010(11)$ $O29$ Fe5^4 $2.043(10)$ Fe5 $O29^6$ $2.043(10)$ $O25$ Fe4^3 $2.051(12)$ Fe5 $O28^7$ $1.990(9)$ $O43$ Fe5 $2.061(10)$ Fe4 $O11^1$ $2.030(8)$ $O5$ Fe2^5 $2.036(10)$ Fe4 $O27^7$ $1.991(8)$ Fe6 $O30^6$ $1.936(10)$ Fe4 $O25^7$ $2.051(12)$ Fe6 $O12^1$ $1.977(9)$ Fe6 $O26^7$ $2.025(9)$ $O7$ Fe1^2 $2.040(11)$ $V11^2$ $V11^2$	027	Fe4 ³	1.991(8)	Fe2 O101	1.968(10)
O19Fe4 $2.008(10)$ Fe3 $O9^1$ $2.037(9)$ O1Fe2 $1.960(9)$ Fe3 $O6^5$ $2.010(11)$ O29Fe5 ⁴ $2.043(10)$ Fe5 $O29^6$ $2.043(10)$ O25Fe4 ³ $2.051(12)$ Fe5 $O28^7$ $1.990(9)$ O43Fe5 $2.061(10)$ Fe4 $O11^1$ $2.030(8)$ O5Fe2 ⁵ $2.036(10)$ Fe4 $O27^7$ $1.991(8)$ Fe6 $O30^6$ $1.936(10)$ Fe4 $O25^7$ $2.051(12)$ Fe6 $O12^1$ $1.977(9)$ Fe6 $O26^7$ $2.025(9)$ O7Fe1 ² $2.040(11)$ V V	022	Fe5	2.008(10)	Fe2 O5 ⁵	2.036(10)
O1Fe2 $1.960(9)$ Fe3 $O6^5$ $2.010(11)$ O29Fe5 ⁴ $2.043(10)$ Fe5 $O29^6$ $2.043(10)$ O25Fe4 ³ $2.051(12)$ Fe5 $O28^7$ $1.990(9)$ O43Fe5 $2.061(10)$ Fe4 $O11^1$ $2.030(8)$ O5Fe2 ⁵ $2.036(10)$ Fe4 $O27^7$ $1.991(8)$ Fe6 $O30^6$ $1.936(10)$ Fe4 $O25^7$ $2.051(12)$ Fe6 $O12^1$ $1.977(9)$ Fe6 $O26^7$ $2.025(9)$ O7Fe1 ² $2.040(11)$ $O25^7$ $O10(11)$	019	Fe4	2.008(10)	Fe3 O91	2.037(9)
$O29$ $Fe5^4$ $2.043(10)$ $Fe5$ $O29^6$ $2.043(10)$ $O25$ $Fe4^3$ $2.051(12)$ $Fe5$ $O28^7$ $1.990(9)$ $O43$ $Fe5$ $2.061(10)$ $Fe4$ $O11^1$ $2.030(8)$ $O5$ $Fe2^5$ $2.036(10)$ $Fe4$ $O27^7$ $1.991(8)$ $Fe6$ $O30^6$ $1.936(10)$ $Fe4$ $O25^7$ $2.051(12)$ $Fe6$ $O12^1$ $1.977(9)$ $Fe6$ $O26^7$ $2.025(9)$ $O7$ $Fe1^2$ $2.040(11)$ $O26^7$ $O26^7$ $O26^7$	01	Fe2	1.960(9)	Fe3 O6 ⁵	2.010(11)
O25 $Fe4^3$ $2.051(12)$ $Fe5$ $O28^7$ $1.990(9)$ O43 $Fe5$ $2.061(10)$ $Fe4$ $O11^1$ $2.030(8)$ O5 $Fe2^5$ $2.036(10)$ $Fe4$ $O27^7$ $1.991(8)$ Fe6 $O30^6$ $1.936(10)$ $Fe4$ $O25^7$ $2.051(12)$ Fe6 $O12^1$ $1.977(9)$ Fe6 $O26^7$ $2.025(9)$ O7 $Fe1^2$ $2.040(11)$ $Fe1^2$ $Fe1^2$ $Fe1^2$	O29	Fe5 ⁴	2.043(10)	Fe5 O296	2.043(10)
O43 Fe5 2.061(10) Fe4 O11 ¹ 2.030(8) O5 Fe2 ⁵ 2.036(10) Fe4 O27 ⁷ 1.991(8) Fe6 O30 ⁶ 1.936(10) Fe4 O25 ⁷ 2.051(12) Fe6 O12 ¹ 1.977(9) Fe6 O26 ⁷ 2.025(9) O7 Fe1 ² 2.040(11) E E E	O25	Fe4 ³	2.051(12)	Fe5 O28 ⁷	1.990(9)
O5 $Fe2^5$ $2.036(10)$ $Fe4$ $O27^7$ $1.991(8)$ Fe6 $O30^6$ $1.936(10)$ $Fe4$ $O25^7$ $2.051(12)$ Fe6 $O12^1$ $1.977(9)$ Fe6 $O26^7$ $2.025(9)$ O7 $Fe1^2$ $2.040(11)$	O43	Fe5	2.061(10)	Fe4 O111	2.030(8)
Fe6 O30 ⁶ 1.936(10) Fe4 O25 ⁷ 2.051(12) Fe6 O12 ¹ 1.977(9) Fe6 O26 ⁷ 2.025(9) O7 Fe1 ² 2.040(11) E E O26 ⁷ D	05	Fe2 ⁵	2.036(10)	Fe4 O27 ⁷	1.991(8)
Fe6 O12 ¹ 1.977(9) Fe6 O26 ⁷ 2.025(9) O7 Fe1 ² 2.040(11)	Fe6	O30 ⁶	1.936(10)	Fe4 O25 ⁷	2.051(12)
O7 Fe1 ² 2.040(11)	Fe6	O121	1.977(9)	Fe6 O26 ⁷	2.025(9)
	07	Fe1 ²	2.040(11)		

Table S2 Selected Bond Lengths for HUST-5

Asymmetric colde : ¹-1/2+X,1/2+Y,+Z; ²1/2+X,-1/2+Y,+Z; ³-1/2+X,-1/2+Y,+Z; ⁴5/2-X,-1/2+Y,-Z; ⁵3-X,+Y,-1-Z; ⁶5/2-X,1/2+Y,-Z; ⁷1/2+X,1/2+Y,+Z

Table S3. ICP-MS results of sectional metal metathesis

	HUST-5	HUST-6
Cr (µg L ⁻¹)	0	259.28
Fe (µg L ⁻¹)	356.37	2.07
Cr/Fe ratio (%)	0	125.26

Figure S1. The asymmetric unit of HUST-5

Figure S2. Pore size distribution curves obtained by the Horvath–Kawazoe method for HUST-5 and HUST-6.

Figure S3. Enlarged CO_2 , CH_4 and C_2H_x sorption isotherms for HUST-5

Figure S4. Enlarged CO_2 , CH_4 and C_2H_x sorption isotherms for HUST-6

Figure S5. Enlarged IAST adsorption selectivities for HUST-5 of equimolar C2H2/C2Hx and C2H2/CO2 mixtures

Figure S6. Enlarged IAST adsorption selectivities for HUST-6 of equimolar C_2H_2/C_2H_x and C_2H_2/CO_2 mixtures

Figure S7. TGA curves of pristine HUST-5, as-synthesized HUST-6 and HUST-6 immersed in water.

Figure S8. XRD pattern of HUST-5 under different conditions

Figure S9. XRD pattern of HUST-6 under different conditions

Figure S10. N₂ sorption isotherms for activated HUST-5, HUST-6 and HUST-6 immersed in 2M HCl at 77K after vacuum-drying at 150 $^{\circ}$ C overnight.

Fig. S11 The CO₂ fit isotherms of HUST-5 at 273 K and 298 K by virial equation.

Fig. S12 The C₂H₆ fit isotherms of HUST-5 at 273 K and 298 K by virial equation.

Fig. S13 The C_2H_4 fit isotherms of HUST-5 at 273 K and 298 K by virial equation.

Fig. S15 The CO₂ fit isotherms of HUST-6 at 273 K and 298 K by virial equation.

Fig. S16 The C_2H_6 fit isotherms of HUST-6 at 273 K and 298 K by virial equation.

Fig. S17 The C₂H₄ fit isotherms of HUST-6 at 273 K and 298 K by virial equation.

Fig. S18 The C_2H_2 fit isotherms of HUST-6 at 273 K and 298 K by virial equation.

Scheme S1. The simplified ligand in the theoretical calculation model, named as 4,4',4",4"'-((6,6-dihydroxy-1,3,5,2I5,4I5,6I5-triazatriphosphinine-2,2,4,4-tetrayl)tetrakis(oxy))tetrabenzoic acid (L2)

Figure S20. relaxed structure of $(M_3O)_2(H_2O)_4(HCOO)(L2)_4$ (M= Fe(a), Cr(b))

Figure S21. HOMO (a) and LUMO(b) of hexa-nuclear chromium cluster.

Table S4.	Summary	of the	adsorption	uptakes,	selectivity	and	heat	of	adsorption	data	for
C_2H_2 and C_2	C_2H_4 in vari	ous MO	OFs.								

	MOF-74-	UTSA-	NOTT-	SIFSIX-1-	NKMOF-1-	NbU-	HUST-
	Fe ⁷	100a ⁸	30010	Cu ⁹	Ni ¹¹	112	6
$BET(m^2 g^{-1})$	1350	970	1370	1178	280	368	645.3
C_2H_2 uptake (cm ³ g ⁻¹)	152.3	95.6	142.0	190.4	61	81.5	78.3
C_2H_4 uptake (cm ³ g ⁻¹)	136.6	37.2	95.9	92.1	47.3	46.4	53.2
$Qst\left(C_2H_2kJmol^{-1}\right)$	47	22	32	30/37	60.3	38.3	31.1
$Qst\left(C_2H_4kJ\;mol^{-1}\right)$	45	-	16	23.5	44.9	37.9	30.2
Selectivity for C_2H_2/C_2H_4 50/50 mixture	1.87	10.72	2.3	8.37	-	5.9	3.8
$ au_{ m break}{}^{14}$	71.52	52.04	56.14	92.31	-	319.24	132.25

 C_2H_x uptake data: at 273K and 1.0 bar (the temperature for MOF-74-Fe is 318 K, for NOTT-300 is 293 K). The selectivity data: calculated by IAST for an equimolar mixture at 1.0 bar and 298K. Dimensionless breakthrough time (τ_{break}) : Breakthrough calculations for separation of C_2H_2/C_2H_4 mixture (50/50) at 293K for HUST-6. The data for MOF-74-Fe is at a temperature of 318 K. The data for UTSA-100a and SIFSIX-2-Cu-i is at a temperature of 298 K.

Figure S22. The enlarged PXRD patterns of HUT-5 and HUS-6

Figure S23. N₂ sorption isotherms for activated HUST-5 derived from Fe₃O cluster, HUST-6 and HUST-5 derived from FeCl₂ cluster at 77K after vacuum-drying at 150 $^{\circ}$ C overnight.

Figure S24. C₂H₄ and C₂H₂ sorption isotherms for HUST-5 (Fe-Cl₂, left) and HUST-6 (Fe-Cl₂, right)

Figure S25. C₂H₄ and C₂H₂ sorption isotherms for MIL-100 (Fe, left) and MIL-100 (Cr, right)

Figure S26. Breakthrough curves for C_2H_2/C_2H_4 separations (10/90) (b) for MIL-100(Cr). References:

S1. C. T. Dziobkowski, J. T. Wrobleski, and D. B. Brown. Inorg. Chem. 1981, 20, 679-684.

S2. B. Li, X. Dai, X. Meng, T. Zhang, C. Liua and K. Yu. Dalton Trans., 2013, 42, 2588–2593.

S3. (a)B. Delley, J. Chem. Phys., 1990, 92, 508; (b)B. Delley, J. Chem. Phys., 1991, 94, 7245; (c) B. Delley, J. Chem. Phys., 2000, 113, 7756.

S4. H. J. Monkhorst and J. D. Pack, Phys. Rev. B, 1976, 13, 5188.

S5. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.

S6. M. Dolg, U. Wedig, H. Stoll, Preuss, H. J. Chem. Phys., 1987, 86, 866.

S7. E. D. Bloch, W. L. Queen, R. Krishna, J. M. Zadrozny, C. M. Brown, J. R. Long, Science, 2012, 335, 1606-1610.
S8. T. L. Hu, H. Wang, B. Li, R. Krishna, H. Wu, W. Zhou, Y. Zhao, Y. Han, X. Wang, W. Zhu, Z. Yao, S. Xiang, B. Chen, Nat. Commun., 2015, 6, 7328

S9. X. Cui, K. Chen, H. Xing, M. J. Zaworotko, B. Chen, Science, 2016, 353, 141-144.

S10. S. Yang, A. J. Ramirez-Cuesta, R. Newby, V. Garcia-Sakai, P. Manuel, S. K. Callear, S. I. Campbell, C. C.
Tang, M. Schröder, Supramolecular binding and separation of hydrocarbons within a functionalized porous metalorganic framework. Nat. Chem. 2014, 7, 121–129.

S11. Y.-L. Peng, T. Pham, P. Li, T. Wang, Y. Chen, K.-J. Chen, K. A. Forrest, B. Space, P. Cheng, M. J. Zaworotko, Z. Zhang, Angew. Chem., Int. Ed., 2018, 57, 10971–10975.

S12. J. Li, L. Jiang, S. Chen, A. Kirchon, B. Li, Y. Li, H. C. Zhou. J. Am. Chem. Soc. 2019, 141, 3807–3811.