Supporting Information

UV-Vis-IR irradiation driven CO₂ reduction with high light-to-fuel efficiency on a unique nanocomposite of Ni nanoparticles loaded on Ni doped Al₂O₃ nanosheets *Qian Zhang, Yuanzhi Li,* Shaowen Wu, Jichun Wu, Zhongkai Jiang, Yi Yang, Lu Ren, Xiujian Zhao*

State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology), 122 Luoshi Road,

Wuhan 430070, P. R. China. E-mail: liyuanzhi66@hotmail.com

Experimental

The η value was also calculated according to the standard molar Gibbs formation energy: ⁵²

$$I_{I}^{0} = (r_{\mathrm{H2}} \times \varDelta_{f} G^{\theta}_{\mathrm{H2}} + r_{\mathrm{CO}} \times \varDelta_{f} G^{\theta}_{\mathrm{CO}} - r_{\mathrm{CH4}} \times \varDelta_{f} G^{\theta}_{\mathrm{CH4}} - r_{\mathrm{CO2}} \times \varDelta_{f} G^{\theta}_{\mathrm{CO2}})/P$$

The values of $\Delta_f G^{\theta}_{H2}$, $\Delta_f G^{\theta}_{CO}$, $\Delta_f G^{\theta}_{CH4}$, and $\Delta_f G^{\theta}_{CO2}$ are 0, -137.2, -50.5, and -394.4 kJ mol⁻¹, respectively. The η value of Ni/Ni-Al₂O₃ with the focused UV-Vis-IR irradiation is 13.5%.

The I_1^{0} value according to $\Delta_f G^{0}$ being less than the corresponding values according to $\Delta_c H^{0}$ are ascribed to the following reason. As CRM is a reaction of entropy enhancement ($\Delta S_{298} = 256.6 \text{ J K}^{-1} \text{ mol}^{-1}$), its ΔG_{298} (170.5 kJ mol⁻¹) is less than its ΔH_{298} (247 kJ mol⁻¹) according to the Gibbs free energy equation ($\Delta G = \Delta H - T \times \Delta S$).

For perform photocatalytic CRM on Ni/Ni-Al₂O₃ at near ambient temperature under the focused UV-Vis-IR irradiation, the reactor was put in an ice-water bath.

The thermodynamic maximum η_{max} value of our reaction system is decided by Carnot efficiency as well as the solar absorption efficiency: ^{52, 55}

 $\eta_{\text{max}} = [1 - \sigma \times T_{\text{H}}^{4} / (I_{\text{DNI}} \times C)] \times [1 - T_{\text{L}} / T_{\text{H}}]$

Where σ is Stefan–Boltzmann constant, I_{DNI} is the direct normal solar irradiation (1 kWm⁻²), C is the concentration ratio of solar flux, T_{H} and T_{L} are the high and low temperatures of the equal Carnot heat engine.

In the present case, the focused UV-Vis-IR irradiation intensity was 333.8 kWm⁻² (C is equal to 333.8). The focused UV-Vis-IR irradiation resulted in the surface temperature of Ni/Ni-Al₂O₃ being rapidly raised to an equilibrium temperature ($T_{\rm H}$ = 764 °C) from room temperature ($T_{\rm L}$ = 25 °C). The $\eta_{\rm max}$ value is calculated to be 57.2%.

Figure S1. SEM image (A), TEM images (B, C), and HRTEM image (D) of Ni-Al₂O₃.

Figure S2. HAADF image (A) and the corresponding element mappings of Ni (B), Al (C), and O (D) of Ni-Al₂O₃.

Figure S3. SEM image (A), TEM images (B, C), and HRTEM image (D) of Ni/Al₂O₃.

Figure S4. HAADF image (A) and the corresponding element mappings of Ni (B), Al (C), and O (D) of Ni/Al₂O₃.

Figure S5. XPS spectra of Ni2p, Al2p, and O1s in Ni-Al₂O₃, Ni/Al₂O₃, Ni/NiAl₂O₃, and the used Ni/NiAl₂O₃ catalyst after the 80 h photothermocatalytic durability test.

Figure S6. N₂ adsorption and desorption (A) and BJH adsorption pore size distribution (B) of Ni-Al₂O₃.

Figure S7. N2 adsorption and desorption (A) and BJH adsorption pore size distribution (B) of Ni/Ni-Al2O3.

Figure S8. N₂ adsorption and desorption (A) and BJH adsorption pore size distribution (B) of Ni/Al₂O₃.

Figure S9. TG-MS profiles of the used catalysts of Ni/Al₂O₃ (A) and Ni/Ni-Al₂O₃ (B) after reacted for 14 and 80 h, respectively.

Figure S10. XRD patterns of the used catalysts of Ni/Al_2O_3 (A) and $Ni/Ni-Al_2O_3$ (B) after reacted for 14 and 80 h, respectively.

Figure S11. TEM image of the used catalysts of Ni/Al₂O₃ (A) and Ni/Ni-Al₂O₃ (B) after reacted for 14 and 80 h, respectively.

Figure S12. HRTEM image of the used Ni/Al₂O₃ catalyst after reacted for 14 h.

Figure S13. Time course of CO and H₂ production rates for photocatalytic CRM on Ni/Ni-Al₂O₃ at near room temperature under the UV-Vis-IR irradiation.

Figure S14. The equilibrium temperatures of Ni/Ni-Al₂O₃ under the focused Vis-IR irradiation.

Figure S15. The CH₄-TPD profiles of Ni/Ni-Al₂O₃ under the UV-Vis-IR irradiation and in the dark.

Figure S16. The CO₂-TPD profiles of Ni/Ni-Al₂O₃ under the UV-Vis-IR irradiation and in the dark.