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Experimental

The Ƞ value was also calculated according to the standard molar Gibbs formation energy: 52 

Ƞ = (rH2 ×ΔfG0
H2 + rCO×ΔfG0

CO - rCH4 ×ΔfG0
CH4- rCO2 ×ΔfG0

CO2)/P 

The values of ΔfG0
H2, ΔfG0

CO, ΔfG0
CH4, and ΔfG0

CO2 are 0, -137.2, -50.5, and -394.4 kJ mol–1, respectively. The Ƞ 

value of Ni/Ni-Al2O3 with the focused UV-Vis-IR irradiation is 13.5%. 

The Ƞ value according to ΔfG0 being less than the corresponding values according to ΔcH0 are ascribed to the 

following reason. As CRM is a reaction of entropy enhancement (ΔS298 =256.6 J K-1 mol-1), its ΔG298 (170.5 kJ mol-

1) is less than its ΔH298 (247 kJ mol-1) according to the Gibbs free energy equation (ΔG = ΔH–T×ΔS).

For perform photocatalytic CRM on Ni/Ni-Al2O3 at near ambient temperature under the focused UV-Vis-IR 

irradiation, the reactor was put in an ice-water bath. 

The thermodynamic maximum Ƞmax value of our reaction system is decided by Carnot efficiency as well as the 

solar absorption efficiency: 52, 55 

Ƞmax= [1-σ×TH
4/ (IDNI×C)] ×[1-TL/TH]

Where σ is Stefan–Boltzmann constant, IDNI is the direct normal solar irradiation (1 kWm-2), C is the 

concentration ratio of solar flux, TH and TL are the high and low temperatures of the equal Carnot heat engine. 

In the present case, the focused UV-Vis-IR irradiation intensity was 333.8 kWm-2 (C is equal to 333.8). The 

focused UV-Vis-IR irradiation resulted in the surface temperature of Ni/Ni-Al2O3 being rapidly raised to an 

equilibrium temperature (TH = 764 oC) from room temperature (TL = 25 oC ). The Ƞmax value is calculated to be 57.2%. 
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Figure S1. SEM image (A), TEM images (B, C), and HRTEM image (D) of Ni-Al2O3. 
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Figure S2. HAADF image (A) and the corresponding element mappings of Ni (B), Al (C), and O (D) of Ni-

Al2O3. 
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Figure S3. SEM image (A), TEM images (B, C), and HRTEM image (D) of Ni/Al2O3. 
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Figure S4. HAADF image (A) and the corresponding element mappings of Ni (B), Al (C), and O (D) of Ni/Al2O3. 
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Figure S5. XPS spectra of Ni2p, Al2p, and O1s in Ni-Al2O3, Ni/Al2O3, Ni/NiAl2O3, and the used Ni/NiAl2O3 catalyst 

after the 80 h photothermocatalytic durability test. 
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Figure S6. N2 adsorption and desorption (A) and BJH adsorption pore size distribution (B) of Ni-Al2O3.
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Figure S7. N2 adsorption and desorption (A) and BJH adsorption pore size distribution (B) of Ni/Ni-Al2O3.
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Figure S8. N2 adsorption and desorption (A) and BJH adsorption pore size distribution (B) of Ni/Al2O3.
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Figure S9. TG-MS profiles of the used catalysts of Ni/Al2O3 (A) and Ni/Ni-Al2O3 (B) after reacted for 14 and 

80 h, respectively.
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Figure S10. XRD patterns of the used catalysts of Ni/Al2O3 (A) and Ni/Ni-Al2O3 (B) after reacted for 14 and 80 

h, respectively.
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Figure S11. TEM image of the used catalysts of Ni/Al2O3 (A) and Ni/Ni-Al2O3 (B) after reacted for 14 and 80 

h, respectively.
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Figure S12. HRTEM image of the used Ni/Al2O3 catalyst after reacted for 14 h.

Figure S13. Time course of CO and H2 production rates for photocatalytic CRM on Ni/Ni-Al2O3 at near room 

temperature under the UV-Vis-IR irradiation.
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Figure S14. The equilibrium temperatures of Ni/Ni-Al2O3 under  the  focused Vis-IR irradiation.

Figure S15. The CH4-TPD profiles of Ni/Ni-Al2O3 under the UV-Vis-IR irradiation and in the dark.

Figure S16. The CO2-TPD profiles of Ni/Ni-Al2O3 under the UV-Vis-IR irradiation and in the dark.
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