Supporting Information

Sulfur Encapsulation by MOF-Derived CoS₂ Embedded in Carbon

Hosts for High-Performance Li-S Batteries

Na Zhang,^{†, #} Yao Yang,^{†, #} Xinran Feng,^{†, §} Seung-Ho Yu,^{†, ⊥}Jeesoo Seok,[†]

David A. Muller,^{‡, △} and Héctor D. Abruña^{†, *}

[†] Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca,

New York, 14853, United States

^{*}School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States

[§] Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14850, United States

^A Kavli Institute for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States

¹Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea

* Corresponding author: <u>hda1@cornell.edu</u>

[#]N.Z. and Y.Y. contributed equally to this work.

This file includes:

Figure S1-S15, Table S1 and references.

Figure S1. Photographs of samples S/ZIF-67, S/Z-CoS₂, hollow ZIF-67, S/H-CoS₂ and ZIF-67. Purple S/ZIF-67 was tranformed to the black S/Z-CoS₂ composite via the heat treatment. After the solid ZIF-67 was treated with tannic acid, the dark purple hollow ZIF-67 was obtained. The sample turned black when the hollow ZIF-67 was mixed with sulfur and went through the heat treatment.

Figure S2. EXAFS profiles and fitting results for (a) S/ZIF-67 and (b) S/Z-CoS₂ composites. The fitting was performed within a Welch window between 1 and 5.5 Å. ZIF-67 and CoS₂ standard references were used to fit the experimental data. The R-factors of fittings results are 0.027 for S/ZIF-67 and 0.013 for S/Z-CoS₂. An R factor less than 0.05 usually indicates a good quality of fit.

Figure S3. XANES spectra of the Co K-edge of S/ZIF-67 and S/ZIF-67 derived CoS_2 (S/Z-CoS₂) composites. The XANES spectrum of S/Z-CoS₂ exhibits similar features as for S/ZIF-67. The shift to lower energies of S/Z-CoS₂, relative to that of S/ZIF-67, suggests a decrease in the oxidation state of Co during the heat treatment.

Figure S4. (a) Raman spectra of S/Z-CoS₂ and S/ZIF-67. (b)TGA curves of S/Z-CoS₂, S/ZIF-67, S/H-CoS₂ and pure sulfur at a ramp rate of 10 °C min⁻¹ in Ar.

Figure S5. Low magnification SEM images of (a) S/ZIF-67 and (b) S/Z-CoS₂.

Figure S6. Cryo-STEM images of S/ZIF-67 composite particles and the corresponding maps of Co (red), S (green) and color overlay (yellow) of Co and S.

Figure S7. (a-b) Cryo-STEM images of S/ZIF-67-derived CoS_2 at its initial state and after EDX mapping, respectively, suggesting no noticeable beam damage during EDX mapping. EDX maps were acquired for 10 min to achieve more than 100 counts/pixel for sulfur and more than 50 counts/pixel for cobalt, with a beam voltage of 200 keV, a beam dose of 6-7 e/(nm² · s) and a pixel size of 128 × 128. Beam damage of all other STEM-EDX maps was routinely examined before and after EDX mapping.

Figure S8. Cryo-STEM images of S/ZIF-67-derived CoS_2 (S/Z-CoS₂) composite particles and the corresponding EDX elemental maps of Co (red), S (green) and color overlay (yellow) of Co and S.

Figure S9. EDX spectrum of S/ZIF-67-derived CoS_2 composite, corresponding to the particle in Figure 3g. The S/Co atomic ratio was quantified to be 6.7:1 based on S and Co K-edges, which is quite consistent with the S/Co ratio (about 8:1) calculated from TGA results. This suggests that the majority of the sulfur is confined within the cage of ZIF-67-derived CoS_2 rather than remaining external to the particles.

Figure S10. EDX spectrum of hollow ZIF-derived CoS_2 (H-CoS₂) composite, corresponding to the particle in Figure 4f. The S/Co atomic ratio was quantified to be around 9.5:1 based on S and Co K-edges, which is significantly larger than the S/Co ratio (2:1) in CoS₂, suggesting the existence of elemental sulfur in the cage of H-CoS₂.

Figure S11. Cryo-STEM images of S/hollow ZIF-derived CoS_2 (S/H-CoS₂) composite particles and the corresponding EDX elemental maps of Co (red), S (green) and color overlay of Co and S. Yellow suggests an overlay of Co and S elements while green indicates pure elemental sulfur.

Figure S12. EIS spectra of S/Z-CoS₂, S/H-CoS₂, and S/ZIF-67.

Figure S13. Cycling performance of S/Z-CoS₂, S/H-CoS₂, and S/ZIF-67 at 0.2 C for 200 cycles. (The capacity values were calculated based on the mass of the composite).

Figure S14. Charge/discharge profiles of S/Z-CoS₂ at high loading at various C-rates.

Figure S15. (a) GITT profiles of S/Z-CoS₂ and calculated lithium ion diffusion coefficients. (b) Comparison of lithium ion diffusion coefficients of S/Z-CoS₂, S/H-CoS₂, and S/ZIF-67.

Figure S16. SEM images of S/Z-CoS₂ electrodes (a,b) before cycling, and (c,d) after 20 cycles.

Cycling stability Materials Rate performance Reference 5C, 430 mAh g⁻¹ 0.2C, 750 mAh g⁻¹, 200 cycles This work $S/Z-CoS_2$ 1C, 440 mAh g⁻¹, 1000 cycles 2C, 616 mAh g⁻¹ 1C, 558 mAh g⁻¹, 160 cycles Hierarchical Ref. 1 micro/mesoporous carbonaceous nanotube 2C, 635 mAh g⁻¹ 0.1C, 570 mAh g⁻¹, 250 cycles MoO_2 Ref. 2 2C, 287 mAh g⁻¹ Ni-MOF 0.2C, 520 mAh g⁻¹, 200 cycles Ref. 3 CoS_x 2C, 525 mAh g⁻¹ 0.1C, 423 mAh g⁻¹, 100 cycles Ref. 4 2C, 1000 mAh g⁻¹ CoS₂/graphene 2C, 320 mAh g⁻¹, 2000 cycles Ref. 5 4C, 480 mAh g⁻¹ 0.5C, 581 mAh g⁻¹, 300 cycles CoS₂(a)G/CNT Ref. 6 2C, 880 mAh g⁻¹ 0.5C, 250 mAh g⁻¹, 1500 cycles Co_9S_8 Ref.7 2C, 752 mAh g⁻¹ 1C, 610 mAh g⁻¹, 450 cycles Ref. 8 Activated carbon nanofiber/Co₃S₄

Table S1. Comparison of electrochemical properties of S/Z-CoS₂ to other reported carbon, metal oxides/sulfides, MOF as sulfur hosts.

References

- 1. K. Mi, Y. Jiang, J. Feng, Y. Qian and S. Xiong, Adv. Funct. Mater., 2016, 26, 1571-1579.
- 2. Q. Qu, T. Gao, H. Zheng, Y. Wang, X. Li, X. Li, J. Chen, Y. Han, J. Shao and H. Zheng, *Adv. Mater. Interfaces*, 2015, **2**, 1500048.
- 3. J. Zheng, J. Tian, D. Wu, M. Gu, W. Xu, C. Wang, F. Gao, M. H. Engelhard, J. G. Zhang, J. Liu and J. Xiao, *Nano Lett.*, 2014, **14**, 2345–2352.
- M. Lao, G. Zhao, X. Li, Y. Chen, S. X. Dou and W. Sun, ACS Appl. Energy Mater., 2017, 1, 167–172.
- 5. Z. Yuan, H. J. Peng, T. Z. Hou, J. Q. Huang, C. M. Chen, D. W. Wang, X. B. Cheng, F. Wei and Q. Zhang, *Nano Lett.*, 2016, **16**, 519–527.
- G. Zhou, H. Tian, Y. Jin, X. Tao, B. Liu, R. Zhang, Z. W. Seh, D. Zhuo, Y. Liu, J. Sun, J. Zhao, C. Zu, D. S. Wu, Q. Zhang and Y. Cui, *Proc. Natl. Acad. Sci. USA*, 2017, **114**, 840–845.
- 7. Q. Pang, D. Kundu and L. F. Nazar, *Mater. Horiz.*, 2016, **3**, 130–136.
- 8. H. Xu and A. Manthiram, *Nano Energy*, 2017, **33**, 124–129.