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Calculation methods

The total turn-over frequency (TOF) reported in this work is based on the number of
metal atoms (Pd + Ag) in catalysts, which is calculated from the equation as follows:

TOF = PyVI(2RTn et (Eq. S1)

Where Py is the atmospheric pressure (101325 Pa), V' is the volume of generated gas
(H, + CO,) at the time of half-completion of reaction, R is the universal gas constant
(8.3145 m?® Pa mol'! K), T is the room temperature (298 K), 7,,.; is the total mole
number of metal atoms (Pd+Ag) in catalyst and t is the time of half-completion of

reaction in hour.
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Fig. S1. Typical TEM images of the MC used for the catalysts synthesis.
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Fig. S2. The EDX spectra of the synthesized Pd,3sAgj,-CeO,/MC catalyst.
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Fig. S3. XPS survey spectra of the synthesized Pd, gAg,,-CeO,/MC catalyst.
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Fig. S4. XPS C 1s (a) and XPS B 1s depth profile (b) of the synthesized PdAg-
CeO,/MC. (c) XPS B 1s depth profile of MC(B) synthesized without using any metal
precursors.

Boron-modified metal nanoparticle species synthesized by using NaBH4 as a
reducing agent in aqueous solution has been reported by Cai et al.3® Since XPS mainly
explores the surface of the material, the depth profiles obtained by Ar etching would
effectively clear the surface residues and analyze the compositions inside the material.
The XPS B 1s depth profiles show that the peak intensity of B-O decreases, while that
of Metal-B remains unchanged after Ar etching for 50 s (Fig. S4b). The decrease of
B-O concentration implies that the oxidized boron species were mostly deposits on the
surface of MC (i.e. not bonded with carbon). This was further verified by the XPS B 1s
depth profile of the MC(B) sample synthesized without using any metal precursors (Fig.
S4c), which implies that the boron species can be effectively removed by Ar etching
for the same time. According to ICP-AES result, the boron concentration of PdAg-
CeO,/MC decreased from 0.47 to 0.14 wt% after the catalytic reactions (Table S1), thus
further prove that most of the boron species are oxidized boron deposits on the surface
(which might be removed during catalytic and wash processes). The remaining small
amount of boron should come from the metal-B (<0.1 wt% based on ICP-AES and XPS
B 1s depth profile analysis) species in the catalyst.

S5



50| ——MC
| —— PdAg-ceo,/MC

FaN
o
1

Transmission (%)
N w
o o
1 |

10 -

4000 3500 3000 2500 2000 1500 1000 500
Wavenumber (cm™)
Fig. S5. FTIR spectra of the MC host and PdAg-CeO,/MC samples.

The typical B-C stretching vibration with absorption band at around 1020 cm™! was not

observed from the FTIR spectra of PdAg-CeO,/MC,>° again indicates the boron species
might not bond with carbon.
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Fig. S6. GC spectrum using FID-Methanator for the commercial obtained pure CO gas
and evolved gas from FA/SF aqueous solution over the optimized PdAg-CeO,/MC
catalyst (npa:ngy = 1:6; npaiag):nra = 0.033).
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Fig. S7. GC spectrum using TCD for the commercial obtained pure H,, Air, CO, CO,
gas and evolved gas from FA/SF aqueous solution over the optimized PdAg-CeO,/MC
catalyst (npa:nse = 1:6; npaiag):nra = 0.033).
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Fig. S8. Volume of the generated gas (H, + CO,) versus time for FA dehydrogenation
in a FA-SF solution at 303 K over PdAg-CeO,/MC catalysts with different Pd contents
(l’lFAII’lSF = 16, N(pd+Ag)-NFA = 0033)
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Fig. S9. (a) Volume of the generated gas (H, + CO,) versus time and (b) TOF for FA
dehydrogenation in a FA-SF solution at 303 K over PdAg-CeO,/MC catalysts
synthesized with different Ce contents (npa:nsr = 1:6; npgrag):nira = 0.033).
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Fig. S10. (a) Volume of the generated gas (H, + CO,) versus time and (b) TOF for FA
dehydrogenation in a FA-SF solution at 303 K over PdAg-CeO,/MC catalysts
synthesized with different PAAg-CeO, contents (nga:nsy = 1:6; npgiag):nra = 0.033).
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Fig. S11. Volume of the generated gas (H, + CO,) versus time for FA dehydrogenation
in a FA-SF solution at 303 K over the optimized PdjsAg,,-CeO,/MC catalyst in the
presence of different SF:FA molar ratio (n(pg+ag):7tra = 0.033).
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Fig. S12. Pdy 3Ag,,-CeO,/MC catalyst catalyzed H, generation from a FA/SF mixture
solution (SF=3M); a low concentration of SF solution (1M); and a high concentration
of SF solution (3M)  at 303 K (n(pa+ag):nra = 0.033).
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S13. Volume of the generated gas (H, + CO,) versus time for the FA
dehydrogenation over PdjgAg;,-CeO,/MC catalyst at different temperatures in
solutions containing different SF:FA molar ratios: (a) 0:1; (b) 3:1; and (c) 6:1

0.033). Inset: Arrhenius plot of FA dehydrogenataion over

PdysAgy,-CeO,/MC catalyst in solutions containing different FA/SF molar ratios: (d)
1/0; (e) 1/3; and (f) 1/6 (n(Pd+Ag):nFA = 0.033).
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Fig. S14. Stability of the optimized PdygAgy,-CeO,/MC catalyst for FA
dehydrogenation in a FA-SF solution at 303 K.
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Fig. S15. TEM image and the corresponding particle size histogram (inset) of the
PdygAg,-CeO,/MC catalyst after the reusability test.
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Fig. S16. XRD patterns of the freshely synthesized PdjsAg,-CeO, catalyst and the
sample after the reusability test.
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Table S1. Catalysts composition determined by inductively coupled plasma atomic
emission spectroscopic (ICP-AES).

(wt%) (after

Catalysts Pd (wt%) Ag (wt%) Ce(Wt%) B (wt%) .
catalysis)
Pd-CeO,/MC 42.6 ~ 14.1 ~ ~
Ag-CeOy/MC ~ 43.0 13.9 ~ ~
PdAg-CeO,/MC 34.0 8.6 14 0.47 0.14
PdAg/MC 41.1 10.4 ~ ~ ~
PdAg-CeO, 56.7 14.4 233 ~ ~
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Table S2 Catalytic activities for the dehydrogenation of formic acid catalyzed by
different heterogeneous catalysts.

Catalyst Temp. (K) Additive E, (kJ/mol) TOF (h) Ref.
AuPd@ED-MIL-101 363 HCOONa - 430.62 11
PdAu/C-CeO, 365 HCOONa 115 113.52 54
AgsPds,@ZIF-8 353 HCOONa 51.38 5802 20
PdAg-CeO,/MC 353 None 40.2 5244.8 This work
In situ-Pd@MSC 333 HCOONa 31.7 9110° 55
PdAg@ZrO,/C/GO 333 HCOONa 50.1 45009 56
PdAg-CeO,/MC 333 HCOONa 23.9 5275.2 This work
PdAg-CeO,/MC 333 None 40.2 1529.6 This work
AgsPdss/C 323 HCOONa 22 3820 15
AuyPdso/C 323 HCOONa 28 230P 57
Au@Schiff-Si02 323 None - 4368 58
(Co3)EPdj 4Au, ¢/rGO 323 HCOONa 39.8 48402 59
(Cog)Ago1Pdjo/rGO 323 HCOONa 43.1 3512.62 18
Pd/MSC-30 323 HCOONa 38.6 26232 60
PdAg-CeO,/MC 323 HCOONa 23.9 3720.7 This work
Pd-B/C 303 HCOONa - 1009.52 38
Auw,Pd;@(P)N-C 303 None 358.3b 61
PdAg-CeO,/MC 313 HCOONa 23.9 2272.8 This work
Pd/CNy s 298 None 48.8 664.5% 43
AugsPdj s/NH,-N-rGO 298 None 4445.6* 62
CoAuPd/C 298 None 80.02 16
NiPd/NH,-N-rGO 298 None 954 .32 45
Pdj sAug3:Mng,/N-SiO, 298 None 26.2 785° 63
AuPd-MnO,/ZIF-80-rGO 298 None - 382.12 9

aThe initial TOF values calculated on initial time or initial conversion of FA;

®The TOF values calculated on the completion time of gas releasing.
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