-Supporting information-

Template free mild hydrothermal synthesis of core-shell Cu₂O(Cu)@CuO visible light photocatalysts

for N-acetyl-para-aminophenol degradation

Sekar Karthikeyan, † Chitiphon Chuaicham, † Radheshyam R Pawar, † Keiko Sasaki, †* Wei Li, ‡ Adam F. Lee, || Karen Wilson, ||

 †Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan
 ‡European Bioenergy Research Institute, Aston University, Birmingham B4 7ET, UK
 #Applied Chemistry & Environmental Science, RMIT University, Melbourne VIC 3000, Australia.

*Corresponding Authors: E-mail: keikos@mine.kyushu-u.ac.jp; adam.lee2@rmit.edu.au; Tel: +81-92-802-3338;

Fig. S1. Low magnification FE-SEM images of (a) Cu₂O@CuO-A, (b) Cu₂O@CuO-B, (c) Cu₂O@CuO-C, and (d) Cu₂O@CuO-D.

Fig. S2. N₂ adsorption-desorption isotherms of Cu₂O@CuO photocatalysts.

Fig. S3. Low magnification TEM images of (a) Cu₂O@CuO-A, (b) Cu₂O@CuO-B, (c) Cu₂O@CuO-C, and (d) Cu₂O@CuO-D, and (e-f) EDX elemental maps of Cu₂O@CuO-B.

		200 nm			20 лт	
		Spot position	Atom %			
			Cu	0		
		1 (core)	58.88	41.12		
Spot 1 2 3 4	5	2	56.38	43.62		
Spot 1°2		3	56.95	43.05		
		4	58.82	41.18		
A State of the second		5	53.78	46.22		
		6 (corona)	49.94	50.06		
200 nm	LG2					

Fig. S4. (a-c) Dark field (S)TEM and (b) bright field TEM images of Cu₂O@CuO-B, and (d) variation in EDX elemental compositions determined across a single rattle-like core-shell nanoparticle.

Fig. S5. Tauc plot for (a) Cu₂O@CuO-A, (b) Cu₂O@CuO-B, (c) Cu₂O@CuO-C, and (d) Cu₂O@CuO-D.

Fig. S6. Valence band XP spectra of Cu₂O@CuO photocatalysts.

Catalyst	Rate constant / min ⁻¹	Catalyst mass and APAP concentration	Flux of light source	Reference
TiO ₂	0.0105	0.4 g.L ⁻¹ catalyst, 4 μM APAP	15 W UV-C lamp (254 nm), 12.6 mW/cm ⁻²	1
Cu/TiO ₂	0.0243	4.0 g.L ⁻¹ catalyst APAP 25 mL	Rayonet RPR-100 photoreactor equipped with 16 visible light lamps	2
Pt/TiO ₂	0.030	5 mg.L ⁻¹ catalyst, 40 μM APAP	UV-C low-pressure Hg lamp (254 nm) 107.4 W/cm ⁻²	3
ZnO nanorod	0.0125	100 mg catalyst, 50 mg.L ⁻¹ APAP	300 W Xe lamp (UV) with external applied bias	4
ZnFe-LDH/rGO	0.0074	25 mg catalyst, 5 mg.L ⁻¹ APAP	500 W Xe lamp (300 nm cut-off filter)	5
Hollow TiO ₂ microspheres	0.0448	50 mg.L ⁻¹ APAP	500W Hg-lamp (UV)	6
Cu ₂ O@CuO-B	0.0679	20 mg catalyst, 0.06 mM APAP	500 W Xe lamp with 400 nm cut- off filter, 1.82 mW/cm ²	Present work

 Table S1. Photocatalytic APAP degradation comparison.

Fig. S7. HPLC of reaction mixture (a) before and (b) after photocatalytic APAP degradation presence of $Cu_2O@CuO-B$.

Fig. S8. HPLC of reactively-formed DNPH-HCHO resulting from DMSO oxidation to formaldehyde in the presence of Cu₂O@CuO-B under visible light. Conditions: 20 mg Cu₂O@CuO-B; 50 mL of 250 μM DMSO; 1 mL samples derivatized using 20 μL H₃PO₄-NaH₂PO₄ buffer and 200 μL of 240 μmol/L DNPH. JASCO LC-netII/ADC HPLC with UV-2075 (355 nm) detector and a Shodex C18M4E analytical column (4.6 mm I.D × 250 mm) held at 32.2 °C and 17.4 MPa; mobile phase of 60:40 (v/v) methanol:water; flow rate of 0.8 mL/min.

Fig. S9. Recycling of APAP photocatalytic degradation over Cu₂O@CuO under visible light.

Apparent quantum efficiency (AQE) determination

The apparent quantum efficiency under visible light irradiation was measured at 420 nm with a band-pass filter according to the following equations:

Apparent quantum efficiency (%) =
$$\frac{Mols \ of \ reacted \ electrons \ per \ unit \ time}{Mols \ of \ incident \ photons \ per \ unit \ time} \times 100$$
 (S1)

Mols incident photons per unit time ($N_{Einstein}$) = Number incident photons per unit time / N_A

Number of incident photons N_p per unit time can be calculated by:

$$N_{p} = \frac{Intensity(E)}{Photon\,energy(E_{p})} \quad \text{; and} \quad photon\,energy(E_{p}) = \frac{hc}{\lambda} \tag{S2}$$

 $E = Irradiance \times reactor area illuminated$

$$E_p = \frac{(6.625 \times 10^{-34} J.s) (3 \times 10^{17} nm.s^{-1})}{\lambda (nm)} = \frac{19.88 \times 10^{-17}}{\lambda (nm)} = 4.73 \times 10^{-19} J$$
(S3)

$$N_p = \frac{E}{E_p} = 0.00819 / 4.73 \times 10^{-19} = 1.73 \times 10^{16} \text{ s}^{-1}$$
(S4)

$$N_{Einstein} = \frac{N_P}{N_{A=}} 2.87 \text{E-06 mols.s}^{-1}$$
(S5)

For APAP photodegradation: $Quantum efficiency (\%) = \frac{APAP removal rate (mol.s - 1)}{Neins} \times 100$ (S6)

Scheme S1. Band positions of Cu₂O@CuO.

References

- 1. L. Yang, E. Y. Liya and M. B. Ray, *Water research*, 2008, **42**, 3480-3488.
- 2. C.-J. Lin and W.-T. Yang, *Chemical Engineering Journal*, 2014, 237, 131-137.
- 3. A. Ziylan-Yavaş and N. H. Ince, *Chemosphere*, 2016, **162**, 324-332.
- 4. C. J. Lin, S.-J. Liao, L.-C. Kao and S. Y. H. Liou, Journal of Hazardous Materials, 2015, 291, 9-17.
- 5. J. Zhu, Z. Zhu, H. Zhang, H. Lu, W. Zhang, Y. Qiu, L. Zhu and S. Küppers, *Applied Catalysis B: Environmental*, 2018, **225**, 550-562.
- 6. C. J. Lin, W.-T. Yang, C.-Y. Chou and S. Y. H. Liou, *Chemosphere*, 2016, **152**, 490-495.