Supplementary information

Novel carbon and sulfur tolerant anode material FeNi₃ @PrBa(Fe,Ni)_{1.9}Mo_{0.1}O_{5+ δ} for IT-SOFCs

Shuangshuang Xue,^a Nai Shi,^a Yanhong Wan,^a Zheqiang Xu,^a Daoming Huan,^a Shaowei Zhang,^a Changrong Xia,^a Ranran Peng,^{*a,b,c} Yalin Lu^{*a,b,c,d}

^{a.} Science and Engineering, University of Science and Technology of China, Hefei, 230026 Anhui, China.

^{b.} Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.

^{c.} Hefei National Laboratory of Physical Science at the Microscale, University of Science and Technology of China, Hefei, 230026 Anhui, China.

^{d.} National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China.

* Corresponding author.

Sample	Space group	a (Å)	b (Å)	c (Å)	R _{wp} (%)	R _P (%)	χ²
PBFMNi0.3	Pm-3m	3.905	3.905	3.905	7.27	5.10	2.71
FeNi₃@PBFMNi0.3	Pm-3m	3.938	3.938	3.938	6.89	5.15	3.20
corresponding fitting errors							

Table. S1 Rietveld refinement results for PBFMNi0.3 and FeNi₃@PBFMNi0.3 samples: lattice parameters and

Table. S2 Oxygen partial pressure (P_{02}) of humidified 5% H_2 /Ar and 10% H_2 /Ar at different temperatures.

	P _{o2} (atm)			
Temperature (C)	5% H ₂ /Ar	10% H ₂ /Ar		
550	7.93 × 10 ⁻²⁷	1.98 × 10 ⁻²⁷		
600	4.93 × 10 ⁻²⁵	1.23 × 10 ⁻²⁵		
650	1.97 × 10 ⁻²³	4.91 × 10 ⁻²⁴		
700	5.41 × 10 ⁻²²	1.35 × 10 ⁻²²		
750	1.07 × 10 ⁻²⁰	2.69 × 10 ⁻²⁰		

Figure. S1 RT-XRD patterns for PBFMNi0.3 powders, SDC powders and their mixtures calcined at 1000 °C in air for 2 hours.

Figure. S2 TEM image of FeNi₃@PBFMNi0.3

Figure. S3 Arrhenius plots of conductivities for (a) FeNi₃@PBFMNi0.1 and (b) FeNi₃@PBFMNi0.2 measured at 550-800 $^{\circ}$ C in wet 5% H₂/Ar, 10% H₂/Ar and 100% H₂, respectively.

ECR technique is based on the equilibrium relationship between the electrical conductivity and the oxygen concentration of nonstoichiometric oxide materials. The conductivity evolution of a sample after an abrupt change in P_{02} of the ambient atmosphere is recorded as a function of time. A typical model used to estimate surface oxygen

exchange coefficient (k_{chem}) and oxygen diffusion coefficient (D_{cnem}) in ECR analysis is to solve the linear diffusion equation (Fick's second law) with linear absorbing boundary conditions. The corresponding analytical solution is given by

$$g(t) = \frac{\sigma(t) - \sigma(0)}{\sigma(\infty) - \sigma(0)} = \frac{c(t) - c(0)}{c(\infty) - c(0)} = 1 - \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sum_{p=1}^{m} \frac{2L_{\beta}^{2} exp^{[m]}(-\beta_{m}^{2}Dt/x^{2})}{\beta_{m}^{2}(\beta_{m}^{2} + L_{\beta}^{2} + L_{\beta})} \times \frac{2L_{\gamma}^{2} exp^{[m]}(-\beta_{m}^{2}Dt/x^{2})}{\gamma_{n}^{2}(\gamma_{n}^{2} + L_{\beta}^{2})}$$

Where g(t) is the normalized conductivity, $\sigma(0)$ and $\sigma(\infty)$ represent the initial and final conductivities, respectively, and c(0) and $c(\infty)$ are the corresponding oxygen concentrations. Parameters x, y and z are the sample dimensions, while β_m , γ_n , ϕ_p are the positive, non-zero roots of $\beta_m tan \beta_m = L_\beta$; $\gamma_n tan \gamma_n = L_\gamma$; $\phi_p tan \phi_p = L_\phi$

The eigenvalues

$$L_{\beta} = \frac{x}{L_c}; L_{\gamma} = \frac{y}{L_c}; L_{\phi} = \frac{z}{L_c}$$

Where

$$L_c = \frac{D_{cnem}}{k_{chem}}$$

The parameters obtained from fitting are the chemical surface exchange coefficient, k_{chem} (m.s⁻¹) and the chemical diffusion coefficient, D_{cnem} (m².s⁻¹). When the sample is thin enough, which often means its thickness is smaller than the characteristic thickness L_c , the diffusion step is so fast that the incorporation reaction is limited only by the surface exchange. What's more, the relative change of the oxygen concentration as a function of time is

$$\frac{\partial c(t)}{\partial t} = -\frac{Sk_{chem}}{t}[c(t) - c(0)]$$

In this case, the normalized conductivity obtained in experiment is fitted with the surface exchange controlling E

$$g(t) = exp[m](1 - \frac{S}{V}k_{chem}t)$$

exponential function

Where S (m²) is the sample surface area and V (m³) is the sample volume.

Figure. S4 Electrical conductivity relaxation curves of (a) FeNi₃@PBFMNi0.1, (b) FeNi₃@PBFMNi0.2 and (c) FeNi₃@PBFMNi0.3 at 550-750 °C

Figure. S5 EIS of button cells using PBFMNi0.1-SDC (black) and PBFMNi0.3-SDC (red) anodes, respectively, operating in wet H₂.

Figure. S6 Cell voltage as a function of testing time for single-cell PBFMNi0.3-SDC|SDC|LSCF-SDC operated under a constant current density of 200 mA cm⁻² at 700 °C.

Figure. S7 EIS of SDC electrolyte-supported single-cell PBFMNi0.3-SDC|SDC|LSCF-SDC operating in wet H_2 , wet propane, wet syngas and syngas-50 ppm H_2S , respectively at 750 °C.

Figure S9 XRD patterns for PBFMNi0.3 powders, CeO₂ powders and SDC powders after exposure to H₂ with 50 ppm

Figure. S10 the SEM images: (a) Cross-sectional view of a whole cell consisting of a PBFMNi0.3-SDC anode and a LSCF-SDC cathode; (b) a PBFMNi0.3-SDC anode and a SDC dense electrolyte; (c) a PBFMNi0.3-SDC anode; (d) Cross-sectional view of a whole cell after 100 h long-term test in syngas with 50 ppm H₂S; (e) a FeNi₃@PBFMNi0.3-SDC anode and a SDC dense electrolyte after 100 h long-term test in syngas with 50 ppm H₂S; (f) FeNi₃@PBFMNi0.3-SDC anode after long term test in syngas with 50 ppm H₂S; (f) FeNi₃@PBFMNi0.3-SDC anode after long term test in syngas with 50 ppm H₂S.