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Figure S1. X-ray diffraction patterns of a Ti3C2 MXene film after annealing and after five 
repetitions of hydrogen annealing process. 
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Figure S2. Raman spectra of Ti3C2 MXene films subjected to different annealing temperatures. 
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Figure S3. (a) TEM images of as-prepared sample (inset: the corresponding diffraction 
patterns). (b), (c) the corresponding intensity profile of as-prepared sample. 

Figure S4. Results of contact angle measurements for as-prepared and hydrogen-annealed 
(900°C) samples. (a) as-prepared, (b) as-prepared in 10 seconds, (c) H2-annealed (d) H2-
annealed in 1 minute. 
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Figure S5. The O 1s regions of the XPS spectra of the (a) as-prepared and (b) hydrogen-
annealed samples. (c) Changes in the ratio of fluorine functional groups after hydrogen 
annealing.
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Figure S6. Component peak-fitting of the Ti 2p region of the XPS spectrum of an as-prepared 
Ti3C2 MXene film after the storage at 70oC with 100% RH for 1 day.
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Figure S7. Change in the sheet resistance after immersion of a hydrogen-annealed sample (900 
°C) and an as-prepared sample in water at room temperature for 1 day. 
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Figure S8. Component peak-fitting of the Ti 2p region of the XPS spectrum of an annealed 
Ti3C2 MXene film (a) before sputtering and (b) after sputtering, after the annealed film was 
kept at 70°C and 100% RH for 1 day. After sputtering, MXene layers approximately 5 nm thick 
were etched from the outermost surface.
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Figure S9. (a) Time evolution of the sheet resistances for as-prepared and hydrogen-annealed 
(300°C for 3 h and 900°C for 30 min) MXene films. (b) X-ray diffraction patterns and the 
corresponding d-spacings for as-prepared and hydrogen-annealed (300°C for 3 h, 900°C for 30 
min) MXene films.
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Figure S10. The changes in the sheet resistance of the Ti3C2 MXene film (the annealing 
temperature is fixed as 500 °C).
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Figure S11. Changes in the sheet resistance of a highly oxidized Ti3C2 MXene film after the 
hydrogen annealing process. 
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Figure S12. Changes in the sheet resistance of Ti3C2 MXene films annealed in the presence 
and absence of flowing hydrogen gas. 
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Table S1. Changes in the sheet resistances of the Ti3C2 MXene films.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

As-prepared

Sheet 

resistance 

(Ω/sq) (R0)

549.4 413.1 391.3 328.7 212.9 369.6 168.2 57.27 834.0 500.4 170.3 116.74 167.7 146.4 278.3

Sheet 

resistance 

(Ω/sq)

2663.2 1718.6 1815.1 2124.4 683.5 21424.4 491.4 283.7 3868.3 2343.3 542.9 3147.8 1130.5 2112.9 30525.3
Oxidized

Rox/R0 4.9 4.2 4.6 6.5 3.2 58.0 2.9 5.0 4.6 4.7 3.2 27.0 6.7 14.4 109.7

Conditions
100°C 

30 min

300°C 

30 min

500°C 

30 min

500°C 

30 min

500°C 

30 min

500°C 

30 min

500°C 

30 min

500°C 

30 min

700°C 

30 min

900°C 

30 min

900°C 

30 min

900°C 

30 min

900°C 

30 min

900°C 

30 min

900°C 

30 min

Sheet 

resistance 

(Ω/sq)

2466.8 1313.9 786.0 653.0 329.9 5187.9 229.4 152.1 1180.3 621.5 159.2 350.5 277.9 350.5 1216.0
H2 annealing

Rre/R0 4.5 3.2 2.0 2.0 1.6 14.0 1.4 2.7 1.4 1.2 0.9 3.0 1.7 3.0 4.4

(Rox − Rre)/(Rox − R0) 0.09 0.31 0.72 0.82 0.75 0.77 0.81 0.58 0.88 0.93 1.03 0.92 0.89 0.85 0.97
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Table S2. Elemental XPS analysis of as-prepared and H2-annealed samples in Ti, O, C, and F 
regions.

 

As-prepared

Name Start BE Peak BE End BE Height CPS FWHM eV Atomic %

C1s 291.96 281.93 279.08 18069.8 0.78 23.23

F1s 691 685.14 681 27694.82 1.54 12.55

O1s 540 533.2 526 61245.42 1.52 40.79

Ti2p 469 455.48 450 46557.65 2.59 23.43

H2 annealed

Name Start BE Peak BE End BE Height CPS FWHM eV Atomic %

C1s 291.96 281.83 279.16 18977.04 0.77 37.75

F1s 691 685.06 681 6264.19 1.07 2.36

O1s 540 533.02 526 29455.06 2.39 36.85

Ti2p 469 455.19 450 46838.46 1.58 23.05
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Table S3. The temperature profiles of the as-prepared and the hydrogen-annealed MXene films 
with various sheet resistances (measured at 150 s).

Temperature measured at 150 s

Sample
Sheet resistance

(Ω /sq)
3V 6V 9V 10V 15V 20V 25V

6.5 33.0 61.0 119.7
62.5 60.7 110.8 166.3 218.7
65.3 53.4 96.9 148.5 197.4

As-
prepared

75.4 48.9 80.9 123.2 166.6
13.3 40.6 83.4 142.3
80.2 72.2 120.5 176.2 231.2

H2-
annealed

105.8 53.5 82.6 119.6 158.9
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Table S4. Comparison of nanomaterials-based heaters.

Nanomaterials
Sheet resistance

(ohm/sq)
Driving voltage

(V)

T
max 

or steady state 

temperature (oC)
Ref

6 83.4Ti
3
C

2
 MXene 

(H
2
 annealed)

13.3
9 142.3

This work

10 110.8Ti
3
C

2
 MXene

(H
2
 annealed)

80.2
25 231.2

This work

Graphene 43 12 100 [1]

Graphene 5 30 115 [2]

AgNW 20 5 73 [3]

AgNW 30 10 200 [4]
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Additional Information

In order to gain further insight on how TiO2 is reduced and remain in the MXene structure, we performed hydrogen 
annealing on three types of MXene samples with different degrees of oxidation: 

1) lightly oxidized sample (MXene solution aged for a week in the fridge), 
2) heavily oxidized sample (MXene solution aged for 6 months in the fridge),
3) intermediately oxidized sample (MXene solution aged for 1 month in the fridge).

Also, to see the influence of hydrogen gas on TiO2 reduction, we conducted similar experiments using different 
sweep gases.

1) Lightly oxidized sample

For the lightly oxidized MXene samples, TiO2 nanoparticles were formed along the edges of the MXene flakes 
(Figure A2-1a). After hydrogen annealing, it was clearly visible in the SEM image (Figure A2-1b) that most of 
the TiO2 nanoparticles were eliminated, which is similar to the results shown in Figure 3e, and 3f.

(a) (b)

Figure A2-1. SEM images of (a) the lightly oxidized and (b) the hydrogen post-annealed Ti3C2 MXene films.

2) Heavily oxidized sample

For the heavily oxidized MXene samples, most particles were transformed to TiO2 in the solution (Figure A2-2a). 
Also, the effect of hydrogen annealing on TiO2 reduction does not seem to be significant. X-ray diffraction patterns 
for the heavily oxidized sample in Figure A2-3 shows that all the not all anatase TiO2 particles were removed, 
rather, a phase transform from anatase to rutile occurs (usually considered to be the high-temperature phase 
relative to anatase) after hydrogen annealing. 
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(a) (b)

Figure A2-2. SEM images of heavily oxidized MXene film (a) before and (b) after annealing.
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Figure A2-3. XRD patterns of a heavily oxidized sample and the hydrogen post-annealed sample (900°C).

3) Intermediately oxidized sample

For the intermediately oxidized sample, two types of particles, 1) small TiO2 particles formed along the edges of 
MXene flakes, and 2) relatively large TiO2 particles formed from the full oxidation of the MXene flake already 
present in the solution were observed (Figure A2-4). After hydrogen annealing, most of the small TiO2 
nanoparticles formed along the edges were eliminated, while the bigger TiO2 particles seemed to be still present. 
For an annealed sample with argon sweep gas, however, no significant change of the surface state was found, 
even though there might be some changes in the phase of the TiO2 particles. Ar annealing with flow rate of around 
100 sccm did not bring any significant change.
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(a) As-prepared (b) As-prepared

(c) Ar-annealed (d) H2-annealed

Figure A2-4. SEM images of (a) as-prepared intermediately oxidized sample, (b) is the magnified views, the 
corresponding samples (c) after annealing with Ar gas, and (d) after annealing with Ar/H2 gas. 
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