## **Supplementary Information for:**

## Chelation-Assisted Formation of Multi-Yolk-Shell Co<sub>4</sub>N@Carbon Nanoboxes for Self-Discharge-Suppressed High-Performance Li-SeS<sub>2</sub> Batteries

Tao Chen,<sup>a,†</sup> Weihua Kong,<sup>a,†</sup> Mengting Fan,<sup>a,†</sup> Zewen Zhang,<sup>a</sup> Lei Wang,<sup>a</sup> Renpeng Chen,<sup>a</sup> Yi

Hu,<sup>a</sup> Jing Ma,\*,<sup>a</sup> and Zhong Jin\*,<sup>a,b</sup>

<sup>a</sup>Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

<sup>b</sup>Shenzhen Research Institute of Nanjing University, Shenzhen 518063, China.

\*Address correspondence to majing@nju.edu.cn, zhongjin@nju.edu.cn



Figure S1. SEM image of ZIF-67 nanocubes.



Figure S2. XRD patterns of ZIF-67 nanocubes and YS-ZIF-67@PDA nanocubes.



**Figure S3.** TEM images of ZIF-67@PDA nanoboxes obtained after the different reaction periods with dopamine: (a) 30 min, (b) 4 h, (c) 5 h, and (d) 7 h. After reacting for 7 h, the inner ZIF-67 yolks were completely dissolved, and only hollow PDA nanoboxes were remained, as shown in (d).

The dopamine molecules firstly captured the cobalt ions released from ZIF-67, leading to the disassembly of the nanostructure. Then, the released 2-methylimidazole (2-MIL) induced the polymerization of dopamine to form polydopamine (PDA) coating on the ZIF-67 surface. As the reaction goes by, the ZIF-67 cores were gradually dissolved due to the strong chelation between the catechol groups and Co ions, thus forming a hollow structure. Therefore, hollow carbon nanoboxes could be easily obtained by simply prolonging the reaction time.



**Figure S4.** TGA curve of MYS-Co<sub>4</sub>N@C nanoboxes in air with a heating rate of 10 °C min<sup>-1</sup>.

According to the reaction equation  $(C + 3Co_4N \rightarrow CO_2 + 4Co_3O_4)$ , the mass ratio of  $Co_4N$  increased by 28.5% after the oxidation of  $Co_4N$  to  $Co_3O_4$ . The weight ratio of  $Co_4N$  ( $W_{Co4N}$ ) was calculated as follows:  $W_{Co4N} \times (100\% + 28.5\%) = 44.8\%$ . Therefore,  $W_{Co4N}$  was calculated as 34.9 wt.%, and the weight ratio of carbon was estimated to be 65.1 wt.%.



Figure S5. (a) SEM image of C-NBs, and (b) TEM image of C-NBs.



Figure S6. XPS spectra at Co  $2p_{3/2}$  region of (a) MYS-Co<sub>4</sub>N@C nanoboxes and (b) MYS-Co<sub>4</sub>N@C/Li<sub>2</sub>S<sub>4</sub> composite, respectively.

**Table S1.** Comparison of the cyclic performances of MYS-Co<sub>4</sub>N@C/SeS<sub>2</sub> electrodein this work with other previously-reported SexSy composite cathodes.

| Ref.  | SeS <sub>2</sub> host material         | Areal SeS <sub>2</sub><br>loading<br>(mg cm <sup>-2</sup> ) | Cycle<br>stability | Initial discharge<br>capacity<br>(mAh g <sup>-1</sup> ) | Areal capacity<br>(mAh cm <sup>-2</sup> ) | Average<br>capacity decay<br>per cycle (%) |
|-------|----------------------------------------|-------------------------------------------------------------|--------------------|---------------------------------------------------------|-------------------------------------------|--------------------------------------------|
| This  |                                        | 1.2                                                         | 300                | 909 at 0.5 C                                            | 1.1                                       | 0.088                                      |
| work  | $1113-C0_4 N(a)C/SeS_2$                | 4.5                                                         | 100                | 850 at 0.1 C                                            | 3.8                                       | 0.13                                       |
| [\$3] | HMC@TiN/SeS <sub>2</sub>               | 5                                                           | 80                 | 880 at 0.05 C                                           | 4.4                                       | 0.20                                       |
|       |                                        | 1                                                           | 200                | 987 at 0.2 C                                            | 1.0                                       | 0.15                                       |
| [S4]  | SeS <sub>2</sub> /MCA                  | 1.5-2                                                       | 250                | 816 at 0.45 C                                           | 1.6                                       | 0.25                                       |
| [85]  | SeS <sub>2</sub> /CMK-3@PDA            | 2.6-3                                                       | 500                | 778 at 1.78 C                                           | 3.7                                       | 0.11                                       |
| [S6]  | CoS <sub>2</sub> @LRC/SeS <sub>2</sub> | 2.3-3                                                       | 400                | 868 at 0.45 C*                                          | 3.0                                       | 0.11                                       |
| [S7]  | Se <sub>2</sub> S <sub>5</sub> /MCM    | 0.5-0.8                                                     | 100                | 1151 at 0.5 C*                                          | 0.9                                       | 0.31                                       |
| [S8]  | Se <sub>2</sub> S <sub>5</sub> /MPC    | 1-2                                                         | 100                | 692 at 0.5 C*                                           | 3.1                                       | 0.38                                       |
| [89]  | SeS <sub>2</sub> /HMCNCs               | 1.2-1.5                                                     | 100                | 986 at 0.18 C                                           | 1.45                                      | 0.16                                       |

\*  $Se_2S_5$  (1C = 1389 mA g<sup>-1</sup>)



Figure S7. XRD patterns of MYS-Co<sub>4</sub>N@C/SeS<sub>2</sub> electrode on Al foil before and after 300 cycles at 0.5 C.



**Figure S8.** SEM images of (a) MYS-Co<sub>4</sub>N@C/SeS<sub>2</sub> and (b) C-NBs/SeS<sub>2</sub> electrodes after 300 cycles at 0.5 C.



**Figure S9.** (a) SEM image and (b-f) corresponding elemental mappings of Co, C, N, Se, and S elements of MYS-Co<sub>4</sub>N@C/SeS<sub>2</sub> electrode after 300 cycles at 0.5 C.



Figure S10. The optimized structures of (a)  $Li_2S_n$  and (b)  $Li_2Se_n$  (n = 4, 6, 8). The (c) front and (d) side views of the slab model of  $Li_2S_n$  or  $Li_2Se_n$  interacted with Co<sub>4</sub>N. The cell size is set as  $10.6 \times 10.6 \times 20.4$  Å<sup>3</sup>.



Figure S11. DFT calculation results of the adsorption geometric configurations and the calculated adsorption energies of (a)  $Li_2S_n$  and (b)  $Li_2Se_n$  (n = 4, 6 or 8) on graphene.

|                    | Li <sub>2</sub> S <sub>4</sub> @Co <sub>4</sub> N | Li <sub>2</sub> S <sub>6</sub> @Co <sub>4</sub> N | Li <sub>2</sub> S <sub>8</sub> @Co <sub>4</sub> N | Li <sub>2</sub> Se <sub>4</sub> @Co <sub>4</sub> N | Li <sub>2</sub> Se <sub>6</sub> @Co <sub>4</sub> N | Li <sub>2</sub> Se <sub>8</sub> @Co <sub>4</sub> N |
|--------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| E <sub>s</sub> /eV | -1494.40                                          | -2050.92                                          | -2606.79                                          | -1422.91                                           | -1943.61                                           | -2463.80                                           |
| $E_{sub}/eV$       | -53309.16                                         | -53309.16                                         | -53309.16                                         | -53309.16                                          | -53309.16                                          | -53309.16                                          |
| $E_{s+sub}/eV$     | -54812.23                                         | -55370.00                                         | -55925.51                                         | -54737.82                                          | -55258.14                                          | -55776.11                                          |
| $E_{ads}/eV$       | -8.68                                             | -9.93                                             | -9.56                                             | -5.75                                              | -5.37                                              | -3.16                                              |

**Table S2.** DFT calculation Results of the energies of  $Li_2S_n$  and  $Li_2Se_n$  (n = 4, 6, 8) on the (111) planes of Co<sub>4</sub>N.

Table S3. DFT calculation results of the adsorption energies of  $Li_2S_n$  and  $Li_2Se_n$ 

|                      | Li <sub>2</sub> S <sub>4</sub><br>@graphene | Li <sub>2</sub> S <sub>6</sub><br>@graphene | Li <sub>2</sub> S <sub>8</sub><br>@graphene | Li <sub>2</sub> Se <sub>4</sub><br>@graphene | Li <sub>2</sub> Se <sub>6</sub><br>@graphene | Li <sub>2</sub> Se <sub>8</sub><br>@graphene |
|----------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|
| E <sub>s</sub> /eV   | -1494.40                                    | -2050.92                                    | -2606.79                                    | -1422.91                                     | -1943.61                                     | -2463.8                                      |
| E <sub>sub</sub> /eV | -4965.22                                    | -4965.22                                    | -4965.22                                    | -4965.22                                     | -4965.22                                     | -4965.22                                     |
| $E_{s+sub}/eV$       | -6460.34                                    | -7016.48                                    | -7572.68                                    | -6388.81                                     | -6909.31                                     | -7429.64                                     |
| $E_{ads}/eV$         | -0.71                                       | -0.33                                       | -0.67                                       | -0.67                                        | -0.48                                        | -0.62                                        |

(n = 4, 6 or 8) on graphene.

**Computational method.** Density functional theory (DFT) calculations were carried out to study the possible adsorption behaviors of  $\text{Li}_2\text{Sn}/\text{Se}_n$  (n=4,6,8) on Co<sub>4</sub>N slab. A slab model of Co<sub>4</sub>N with the cell size of 10.6 × 10.6 × 20.4 Å<sup>3</sup> (as shown in **Figure S10**) was built. The vacuum thickness is set to 15 Å, in order to avoid the interactions between successive slabs. And simultaneously at the same level of calculation, a model  $\text{Li}_2\text{Sn}/\text{Se}_n$ @ graphene, of which the cell size is  $9.8 \times 9.8 \times 20.4$  Å<sup>3</sup>, was built as a comparison. The stable adsorption structures and the final energies were obtained by using Cambridge Sequential Total Energy Package (CASTEP) simulation package<sup>S1,2</sup> in the Materials Studio 7.0. Generalized gradient approximation (GGA) in the form of Perdew–Burke–Ernzerhof (PBE) functional was employed for the DFT exchange correlation energy, and ultrasoft pseudo-potentials were used for the core electrons. Grimme's method was added to the GGA energy to describe the long-rangeinteractions<sup>S1</sup>.

The adsorption energy  $E_{ads}$  of  $Li_2S_n/Se_n$  (n=4,6,8) is calculated by:

 $E_{ads} = E_{s+sub} - E_s - E_{sub}$ 

where  $E_{s+sub}$  and  $E_{sub}$  are the total energies of the surface with and without the  $Li_2S_n/Se_n$  (n=4,6,8) adsorbate, respectively, and  $E_s$  is the energy of a  $Li_2S_n/Se_n$  (n=4,6,8) molecule in vacuum atmosphere. A plane-wave basis set with an energy cutoff energy of 450 eV was assigned and the self-consistent field (SCF) tolerance was  $2.0 \times 10^{-6}$  eV/atom. The convergence criteria of geometry optimizations were set to be  $2.0 \times 10^{-5}$  eV/atom for energy,  $5.0 \times 10^{-2}$  eV/Å for the gradient, and  $2 \times 10^{-3}$  Å for the displacement, respectively.

(1)

Theoretical calculations, as shown in **Table S2**, hint that these molecules tend to be well trapped when  $Co_4N$  presents, inhibiting the shuttle issue of polysulfieds and polyselenides, while they seem to be not well trapped on graphene (Table S3).

## Reference

[S1] Z. Chen, Y. Song, J. Cai, X. Zheng, D. Han, Y. Wu, Y. Zang, S. Niu, Y. Liu, J. Zhu, X. Liu, G. Wang, *Angew. Chem. Int. Ed.* 2018, *57*, 5076.
[S2] Z. H. Li, Q. He, X. Xu, Y. Zhao, X. W. Liu, C. Zhou, D. Ai, L. X. Xia, L. Q. Mai, *Adv. Mater.* 2018, *30*, 1804089.