Electronic Supplementary Information

Enhanced High-voltage Cycling Stability of Ni-rich Cathode Materials via

Self-assembly of Mn-rich Shells

Xinyu Dong,^{a, b, #} Junyi Yao,^{a, b, #} Wenchang Zhu,^{a, b} Xue Huang,^{a, b} Xiaoxiao Kuai,^{a, b} Jing Tang,^{c, *} Xiaolong Li,^d Shuyan Dai,^{a, b} Liwei Shen,^{a, b} Ruizhi Yang,^{a, b} Lijun Gao,^{a, b, *} Jianqing Zhao^{a, b, *}

^a College of Energy, Soochow Institute for Energy and Materials InnovationS, Soochow University, Suzhou 215006, China

^b Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China

^c School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 20062, China ^d Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China

[#] These two authors equally contribute to this work.

Corresponding authors: Prof. Jianqing Zhao, Email: jqzhao@suda.edu.cn Prof. Lijun Gao, Email: gaolijun@suda.edu.cn Prof. Jing Tang, Email: jingtang@chem.ecnu.edu.cn

Figure S1. Electrochemical performance of the $Li_{0.65}Mn_{0.59}Ni_{0.12}Co_{0.13}O_{\delta}$ (mark as LMNCO) material as a cathode material in a voltage range of 2.7-4.6 V *vs.* Li⁺/Li: (a) discharge curves in the 1st, 2nd, and 5th cycles at 0.1 *C*, and (b) high-rate performance up to 5 *C* and (c) EIS spectra with fitting profiles based on the equivalent circuit as the inset at room temperature and 55 °C.

Figure S2. Time-resolved effects of the high-energy sonofragmentation on tailoring morphology and structure of the LMNCO material: SEM images showing distinct morphologic changes of the LMNCO material subjected to different sonication hours for (a) 0 h, *i.e.*, original LMNCO particles, (b) 6 h, (c) 12 h, (d) 24 h and (e) 30 h (marked as LMNCO-nh, respectively), and TEM image of (f) LMNCO-6h.

Figure S3. Comparative cycling performance of finalized NMC811@3% LMNCO, NMC811@5% LMNCO and NMC811@7% LMNCO cathode materials at 0.1 *C* in a voltage range of 2.7-4.6 V *vs.* Li⁺/Li at room temperature.

Figure S4. (a) XRD patterns of NMC811@3% LMNCO, NMC811@5% LMNCO and NMC811@7% LMNCO intermediates, and (b) an enlarged selected XRD portion at 2θ =44-45° highlighted in yellow in Figure S4a.

Figure S5. SEM images of (a) NMC811@3% LMNCO, (b) NMC811@5% LMNCO and (c) NMC811@7% LMNCO materials.

Figure S6. TEM images of the NMC811@5% LMNCO intermediate captured from different particles with (a) nano size and (b) micron size.

Figure S7. GITT curves of the bare NMC811 and core-shell-structured NMC811@5% LMNCO cathodes after the cells were first cycled at 0.1 *C* for 3 cycles in a voltage range of 2.7-4.6 V *vs.* Li⁺/Li. For the GITT measurement, the cell was first charged from open circuit voltage (OCV) at a τ =20 min with current pulse of 0.1 *C*, followed by a relaxation time of 60 min to allow the system to reach electrochemical equilibrium.

Cathode materials (Operation conditions)	Initial Capacity (mAh g ⁻¹)	Capacity (retention) After 50 cycles	Capacity (retention) After 100 cycles	Capacity (retention) After 200 cycles	Reference
NMC811@5% LMNCO	195.7	179.3	175.1	173.1	This work
(2.7-4.6 V, 1 <i>C</i> =200 mA g ⁻¹ , 55 °C)		(91.6 %)	(89.5 %)	(88.5 %)	
NMC811	208.6	158.1	148.0	140.7	This work
(2.7-4.6 V , 1 <i>C</i> =200 mA g ⁻¹ , 55 °C)		(75.8 %)	(70.95 %)	(67.5 %)	
NMC811	209.0	140.03			Ref. S1
(2.7-4.4 V , 1C=200 mA g ⁻¹ , 55 °C) 1		(67 %)			
NMC811	205.0	132.4			Ref. S2
(3.0-4.3 V, 1 <i>C</i> =180 mA g ⁻¹ , 60 °C) ²		(64.6 %)			
LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂	196.8	(67	132.0		Ref. S3
(2.8-4.3 V, 2 <i>C</i> =360 mA g ⁻¹ , 55 °C) ³			(67.1 %)		
LiNi _{0.62} Co _{0.14} Mn _{0.14} O ₂	206.0	(62.6	129		Ref. S4
(2.7-4.5 V, 1C=180 mA g ⁻¹ , 60 °C) ⁴			(62.6 %)		
LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂	175.0	144.7			Ref. S5
(2.7-4.3 V, 1C=180 mA g ⁻¹ , 60 °C) ⁵		(82.6 %)			
LiNi _{0.5} Mn _{1.5} O ₄	120.0		18.0		Ref. S6
(2.7-4.9 V, 0.5C=60 mA g ⁻¹ , 55 °C) ⁶			(15 %)		
LiMn ₂ O ₄	131.0			108.7	Ref. S7
(3.5-4.3 V, 0.5C=74 mA g ⁻¹ , 50 °C) ⁷				(83.0 %)	
LiMn ₂ O ₄	130.0	74.0			Ref. S8
(3.0-4.3 V, 1C=148 mA g ⁻¹ , 55 °C) ⁸		(57.0 %)			

Table S1. Cycling stabilities of various cathode materials cycled at elevated working temperatures.

References:

- (1) Sun, Y.K.; Myung, B.C.; Prakash, J., High-energy Cathode Material for Long-Life and safe lithium batteries. *Nat. Mater.*, **2019**, *8*, 320-324.
- (2) Jang, S. H.; Mun, J.; Kang, D. K.; Yim, T., Effect of Tris(trimethylsilyl) Phosphate Additive on the Electrochemical Performance of Nickel-rich Cathode Materials at High Temperature. *J. Electrochem. Sci. Tech.*, **2017**, *8*, 162-168.
- (3) Chen, T.; Li, X.; Wang, H.; Yan, X. X.; Wang, L.; Deng, B. W.; Ge, W. J.; Qu, M. Z., The Effect of Gradient Boracic Polyanion-doping on Structure, Morphology and Cycling Performance of Ni-rich LiNi_{0.8}Co_{0.15}Al_{0.05}O₂ Cathode Material. *J. Power Sources*, **2018**, *374*, 1-11.
- (4) Liao, Y.; Manthiram ,A.; Surface-modified Concentration-gradient Ni-rich Layered Oxide Cathodes for High-energy Lithium-ion Batteries. *J. Power Sources*, **2015** 282,429-436.
- (5) Cho, W.; Kim, S.M.; Song, J.H.; Yim ,T.; Woo, S.G.; Lee, K.W.; Kim, J.S.; Kim, Y.J., Improved Electrochemical and Thermal Properties of Nickel Rich

 $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ Cathode Materials by SiO_2 Coating. J. Power Sources, **2015** 282,45-50.

- (6) Tu, W. Q.; Ye, C. C.; Yang, X. R.; Xing, L. D.; Liao, Y. H.; Liu, X.; Li, W. S., Trimethylsilylcyclopentadiene as a Novel Electrolyte Additive for High Temperature Application of Lithium Nickel Manganese Oxide Cathode. *J. Power Sources*, 2017, 364, 23-32.
- (7) Shaju, K. M.; Bruce, P. G., A Stoichiometric Nano-LiMn₂O₄ Spinel Electrode Exhibiting High Power and Stable Cycling. *Chem. Mater.*, **2008**, *20*, 5557-5562.
- (8) Wang, J. L.; Li, Z. H.; Yang, J.; Tang, J. J.; Yu, J. J.; Nie, W. B.; Lei, G. T.; Xiao, Q. Z., Effect of Al-doping on the Electrochemical Properties of a Three-dimensionally Porous Lithium Manganese Oxide for Lithium-ion Batteries. *Electrochim. Acta*, **2012**, 75, 115-122.