# Solid-state Dendrite-free Lithium-Metal Battery with Improved Electrode Interphase and Ion Conductivity Enhanced by Bifunctional Solid Plasticizer

Jun Peng, a Li-Na Wu, a Jin-Xia Lin, a Chen-Guang Shi, a Jing-Jing Fan, a Li-Bin Chen, a Peng Dai,

<sup>a</sup> Ling Huang, \*<sup>a</sup> Jun-Tao Li<sup>b</sup> and Shi-Gang Sun\*<sup>a</sup>

<sup>a</sup> Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University,

Xiamen, Fujian, 361005, China

<sup>b</sup> College of Energy and School of Energy Research, Xiamen University, Xiamen, Fujian 361005, China

### AUTHOR INFORMATION

### **Corresponding author**

\*E-mail: huangl@xmu.edu.cn (L.H.)

\*E-mail: sgsun@xmu.edu.cn (S.-G. S)

#### **1** Experimental Details

#### 2 Preparation of composite electrolytes

Polyethylene oxide (PEO,  $M_w = 6 \times 10^5$ , Sigma Aldrich) was dried for 48 h at 45 °C in a vacuum 3 oven overnight. Lithium bis(trifluoromethanesulfonyl) imide (LiTFSI, >99%, battery grade, 4 Sigma Aldrich) was dried for 24 h at 60°C. Lithium Aluminium Germanium Phosphate (LAGP, 5 Li<sub>1.5</sub>Al<sub>0.5</sub>Ge<sub>1.5</sub>(PO<sub>4</sub>)<sub>3</sub>, MTI Kejing Group). Succinonitrile (SN, From Macklin) was dried for 12 h 6 at 60°C. All materials stored in a glove box ( $H_2O < 0.5$  ppm,  $O_2 < 0.5$  ppm). The solid organic-7 8 inorganic composite polymer electrolyte (SPE) was prepared by dissolving PEO and LiTFSI in 9 acetonitrile ( $H_2O < 0.003\%$ , Aladdin) with a PEO/LiTFSI mole ratio of 18:1. And then, different amount of LAGP powders and SN were added to the white slurry, the slurry was laid flat on the 10 PTFE doctor by a delayed flow method. It was dried in an Ar-filled glove box (with H<sub>2</sub>O and O<sub>2</sub> 11 contents below 0.5 ppm, respectively) for about 12.0 h, then dried in vacuum oven for additional 12 12.0 h to completely remove the solvent. This free-standing film can be peeled off and cut into 18 13 mm used as diaphragm and electrolyte. The formed SPEs are denoted as SPE-X-Y (X = 8, 14 and 14 23, Y= 5, 15, 25), where x indicates the weight percentage of LAGP, Y indicates the weight 15 percentage of SN. 16

#### 17 Sample characterizations

The particle size distribution was tested by Zeta Plus (Brookhaven) laser particle size analyzer, ethanol was used as solvent. The morphology and phase were characterized by Hitachi S-4800 scanning electron microscopy (SEM) and X-ray power diffraction (Ultima IV,  $2\theta = 10^{\circ}-90^{\circ}$ ). Differential scanning calorimetry (DSC) analyses of SPEs were obtained in a NETZSCH DSC equipment. The samples were heated from -60 °C to 100 °C at a heating rate of 10 °C min<sup>-1</sup>. Fourier transform infrared (FTIR) spectra of the samples were recorded on the Nicolet 380 in the range of

500-3000 cm<sup>-1</sup> sandwiched between two BF<sub>2</sub> windows. The ionic conductivities of PPEs were 1 determined via electrochemical impedance spectroscopy (EIS). Imposed an AC amplitude of 10 2 mV, the measurements were achieved with a frequency from 10<sup>5</sup> to 10 mHz at various 3 temperatures from 20 to 90 °C. Ionic conductivity  $\sigma$  was calculated based on the following 4 equation: 5

8

7 where  $R_b$  represents the resistance according to EIS measurement, l represents the thickness of SPE membrane, and S represents the cross-section area.

 $\sigma = \frac{l}{R_b \bullet S} \quad (1)$ 

The Li-ion transference number measurement was conducted with a Li| SPE|Li symmetrical cell 9 system, polarized with a DC voltage of 10 mV, 40 °C.  $t_{Li}^{t}$  was calculated by the following 10 equation: 11

$$t_{Li}^{+} = \frac{I_{S}(\Delta V - I_{0}R_{0})}{I_{0}(\Delta V - I_{S}R_{S})}$$
(2)

Electrochemical windows of the SPEs were measured by LSV using Li |SPE|SS button cells with 13 the scan from 2.0 to 7.0 V at a scan rate of 1 mV s<sup>-1</sup>, 40 °C. 14

#### Electrochemical techniques for investigating the formation of lithium dendrites 15

The linear sweep voltammogram (LSV) curves of Li electrodeposition on the Li anode were 16 obtained in a Li/SPEs/Li symmetrical cell with a CHI660D electrochemical station (Chenhua, 17 China) at a scan rate of 2 mV s<sup>-1</sup>, 40 °C. The interface compatibility and stability between SPEs 18 19 and Li metal anodes were examined by recording the variation tendency of interfacial resistance (Ri) for Li|SPE|Li symmetric cells, following continuously increasing storage time at 40 °C. The 20

diffusion coefficients of Li<sup>+</sup> (D<sub>Li+</sub>) were obtained in a Li |SPEs |Li symmetrical cell at a potential
 step of 0.2 V, and get the result according to the formula:

3

$$D_{Li^+} = -\frac{d \ln I 4 L^2}{d t_t \pi^2} \tag{3}$$

4

5 where *I* presents the current density, *L* presents the thickness of SPE membrane, and *t* represents
6 the process time of potential step. We use PEO (PEO-LiTFSI), PEO-LAGP (PEO-LiTFSI-14 wt.
7 % LAGP) and PEO-LAGP-SN (SPE-14-15) as compare samples, because the obvious different
8 performance of them.

#### 9 Batteries test

LiFePO<sub>4</sub> cathodes and Li metal anodes were employed to assemble all-solid-state batteries. 70 % 10 11 LFP (MTI Kejing Group) powders, 10% LAGP powder, 10% super P carbon blacks, and 10 % 12 polyvinylidene fluoride (PVDF) binder were fully mixed in N-methyl-2-pyrrolidone (NMP) and the resultant slurry was coated on Al foil by using a doctor blade then dried in an oven at 110 °C 13 for 10 h. The LFP cathode foil was punched into 14 mm-diameter disks and the typical active 14 material loading was about  $2\sim3$  mg cm<sup>-2</sup>. Commercial Li metal foils were purchased from China 15 Energy Lithium Co., Ltd. All the batteries were assembled without using a separator or additional 16 liquid electrolyte in an Ar-filled glove box ( $H_2O < 0.1$  ppm,  $O_2 < 0.1$  ppm). The Li|SPEs|LFP 17 ASSLMBs cells were cycled in galvanostatic mode with voltage range of 2.8 - 3.8 V at 40 °C (1.0 18 C = 175 mA g<sup>-1</sup>). We use PEO (PEO-LiTFSI), PEO-LAGP (PEO-LiTFSI-14 wt.% LAGP) and 19 PEO-LAGP-SN (PEO-LiTFSI-14 wt.% LAGP-15 wt.% SN, SPE-14-15) as compare samples, 20 because the obvious different performance of them. 21



1

3 Figure S1. Size distribution of the LAGP particles determined by a laser particle size analyzer.



5 Figure S2. DC polarization result for Li | SPE | Li symmetrical cells under a potential step of 10
6 mV at 40 °C and EIS profiles of cells before and after polarization. (a) PEO, (b)PEO-LAGP, (c)
7 PEO-LAGP-SN.



Figure. S3 Voltage time traces of Li |SPE| Li symmetric cells at a current density of 0.2 mA
cm<sup>-2</sup> (0.2 mAh cm<sup>-2</sup>),40 °C. (a) Pure PEO<sub>18</sub>-LiTFSI, (b) PEO<sub>18</sub>-LiTFSI-14 wt.% LAGP, (c)

5 PEO<sub>18</sub>-LiTFSI-15 wt.% SN.



5 Figure. S5 Exchange current densities of Li anodes in different SPEs at 40 °C as determined by





2 Figure. S6 Time dependence of interfacial impedance (Ri) with Li | SPE | Li cells using

3 different electrolytes at 40 °C.

4

1



6 Figure. S7 Galvanostatic stripping test of cells with different SPEs (0.5 mA cm<sup>-2</sup>, 40  $^{\circ}$ C).



- 3 Figure S8 Impedance spectra of Li| SPEs| LFP cells use different electrolyte after 40 cycles.



- 7 Figure S9 SEM image of surface morphologies of Li anodes obtained from Li|SPE-14-15 | LFP
- 8 cell after 200 cycles at 0.5 C under 40°C.

| Electrolyte                       | Tg / °C | Tm / °C | ΔHm / J g <sup>-1</sup> | χς %  |
|-----------------------------------|---------|---------|-------------------------|-------|
| РЕО                               | -       | 73.5    | 132.8                   | 65.4  |
| SN                                | -       | 58      | 50                      | -     |
| PEO-LiTFSI                        | -40.6   | 54.1    | 65.29                   | 32.16 |
| PEO-LiTFSI-14 wt.%LAGP            | -42.8   | 54.1    | 35.29                   | 17.38 |
| PEO-LiTFSI-14 wt.%LAGP-25 wt.% SN | -46.4   | 42.6    | 25.81                   | 12.71 |
| PEO-LiTFSI-14 wt.%LAGP-15 wt.% SN | -48.3   | 40.3    | 20.33                   | 10.01 |
| PEO-LiTFSI-14 wt.%LAGP-5 wt.%SN   | -44.9   | 47.9    | 27.34                   | 13.46 |

Table S1. The values of  $T_g,\,T_m,$  and  $\Delta H_m$  from DSC test and  $\chi_c$  of samples

2 The crystallinities  $(\chi_c)$  of the composite SPEs are calculated by Eq:

$$x_c = \frac{\Delta H_m}{\Delta H_{PEO}}$$

4 (where  $\chi_c$  represents the relative percentage of crystallinity of the PEO-based polymer electrolyte, 5 and  $\Delta H_{PEO}$  represents the  $\Delta H_m$  of 100 % crystalline PEO (203 J g<sup>-1</sup>)).

6

7

**Table S2.** The values of  $I_0$ , Is,  $R_0$ , Rs, and the calculated values of  $t_{Li^+}$  at 40 °C

| Electrolytes                | $I_0 / \mu A$ | $I_s/\mu A$ | $R_0 / \Omega$ | $R_s / \Omega$ | $\Delta V / mV$ | $t_{Li^+}$ |
|-----------------------------|---------------|-------------|----------------|----------------|-----------------|------------|
| PEO                         | 4.81          | 2.21        | 1425           | 1475           | 10              | 0.215      |
| PEO-14 wt.% LAGP            | 8.98          | 5.36        | 400            | 450            | 10              | 0.506      |
| PEO-14 wt.% LAGP-15 wt.% SN | 8.09          | 4.53        | 280            | 300            | 10              | 0.501      |

<sup>8 (</sup>Where  $I_0$  and  $I_s$  represent the initial and steady polarization currents,  $R_0$  and  $R_s$  represent the

<sup>9</sup> initial and steady interfacial resistances.)

| Electrolytes                | $E_a / eV (25^{\circ}C-60^{\circ}C)$ |
|-----------------------------|--------------------------------------|
| PEO                         | 1.01                                 |
| PEO-14 wt.% LAGP            | 0.71                                 |
| PEO-14 wt.% LAGP-15 wt.% SN | 0.34                                 |

## **Table S3.** The activation energy of SPEs.

**Table S4.** The fitted value of electrochemical impedance spectroscopy (EIS) about the

4 Li|SPE|LFP cell after 50<sup>th</sup> cycling.

| SPEs                        | $Ri(R_2) / \Omega$ |
|-----------------------------|--------------------|
| РЕО                         | 506.4              |
| PEO-14 wt.% LAGP            | 226.5              |
| PEO-14 wt.% LAGP-15 wt.% SN | 165.2              |

| Electrolytes               | Li-ion                      | Reversible          | Capacity  | Cycle  | Working     | Reference |
|----------------------------|-----------------------------|---------------------|-----------|--------|-------------|-----------|
|                            | conductivity/S              | capacity/           | retention | number | temperature |           |
|                            | cm <sup>-1</sup>            | mAh g <sup>-1</sup> |           |        | /°C         |           |
| PEO-14 wt.%                | 1.26×10 <sup>-4</sup> (30°C | 142.6               | 0.5 C     | 200    | 40          | This      |
| LAGP-15 wt.%               | )                           |                     | 91.2 %    |        |             | work      |
| SN                         |                             |                     |           |        |             |           |
| PEO-LLZTO                  | 1.12×10 <sup>-5</sup> (25°C | 135                 | 0.1 C     | 100    | 60          | [13]      |
|                            | )                           |                     | 87 %      |        |             |           |
| PEO-LiTFSI-                | 5.53×10 <sup>-5</sup> (25°C | 123                 | 0.5 C     | 100    | 60          | [16]      |
| (5%) LLTO                  | )                           |                     | 94 %      |        |             |           |
| nanowires                  |                             |                     |           |        |             |           |
| PEO <sub>18</sub> -LiTFSI- | 1.19×10 <sup>-4</sup> (25°C | 130.2               | 1 C       | 500    | 60          | [17]      |
| LLZO-SN                    | )                           |                     | 80 %      |        |             |           |
| Sandwich-type              | 1. 6×10⁴(30°C )             | 99.1                | 0.1 C     | 200    | 30          | [19]      |
| PEO-LLZTO                  |                             |                     | 82.4 %    |        |             |           |
| PEO-LiTFSI-                | 5.5×10 <sup>-4</sup> (30°C) | 121                 | 0.5 C     | 105    | 60          | [20]      |
| (7.5%) LLZO                |                             |                     | 89 %      |        |             |           |
| PEO-LGPS-SN                | 9.1×10 <sup>-5</sup> (25°C) | 138.4               | 0.5 C     | 100    | 40          | [22]      |
|                            |                             |                     | 87.65 %   |        |             |           |
| PEO-LLZO (40               | 2.1×10 <sup>-4</sup> (30°C) | 118                 | 0.1 C     | 200    | 60          | [23]      |
| nm)                        |                             |                     | 90 %      |        |             |           |
| vertically aligned         | 1.1×10 <sup>-4</sup> (25°C) | 120                 | 0.6 C     | 400    | 60          | [30]      |
| ceramic LAGP-              |                             |                     | 87.4 %    |        |             |           |
| PEO                        |                             |                     |           |        |             |           |
| PEO-vermiculite            | 1.89×10 <sup>-4</sup> (25°C | 131                 | 0.5 C     | 200    | 35          | [34]      |
|                            |                             |                     |           |        |             |           |

## 1 Table S5. Li|SPEs|LFP Performance comparison of this work and reported ASSLMBs.

| sheets (VS)    | )                           |     | 82 %  |     |    |      |
|----------------|-----------------------------|-----|-------|-----|----|------|
| PEO-IL-LLZTO   | 2.2×10 <sup>-4</sup> (20°C) | 120 | 0.5 C | 150 | 25 | [51] |
|                |                             |     | 88 %  |     |    |      |
| PEO-LAGP       | /                           | 152 | 0.2 C | 150 | 50 | [52] |
| (LPON modified |                             |     | 98 %  |     |    |      |
| Li anode)      |                             |     |       |     |    |      |