Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information for

Chemical fixation of carbon dioxide catalyzed via covalent triazine frameworks as metal free heterogeneous catalysts without cocatalyst

Yi-Meng Li,^a Li Yang,^{acd} Lei Sun,^a Lei Ma, *^b Wei-Qiao Deng,^{ac} Zhen Li*^a

a. Institute of Molecular Sciences and Engineering, Institute of Frontier and

Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China. Email:

zhen_li@sdu.edu.cn

- b. School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China. E-mail: malei@syuct.edu.cn
- c. State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, DaLian, 116023, P. R. China.
 - d. University of the Chinese Academy of Sciences, Beijing 100039, P. R. China.

Table S 1 Overview of the detai	led synthesis parameter	s used for the CTFs dis	cussed in this work	
	2,5-DCP	ZnCl ₂	Mass ratio of	
Materials	/g	/g	ZnCl ₂ /monomer	Reaction conditions
2,5-DCP-CTF-0	1	10	1:10	400 °C/40 h
2,5-DCP-CTF-1	1	10	1:10	600 °C/40 h
2,5-DCP-CTF-2	1	12	1:12	400 °C/20 h and 600 °C/20 h
2,5-DCP-CTF-3	1	10	1:10	400 °C/20 h and 600 °C/20 h
2,5-DCP-CTF-4	1	12	1:12	400 °C/20 h and 600 °C/60 h

Fig. S1 TGA curves of 2,5-DCP-CTF under air.

Fig. S2 CO₂ adsorption isotherms and the dual-site Langmuir to fit the CO2 adsorption isotherms of 2,5-DCP-CTF-0, 2,5-DCP-CTF-1, 2,5-DCP-CTF-2, 2,5-DCP-CTF-3, 2,5-DCP-CTF-4 measured at 273 K and 298K (symbol : CO₂ adsorption isotherms, line: the dual-site Langmuir to fit the CO2 adsorption isotherms).

Dual-site Langmuir parameter for adsorption of CO2 in 2,5-DCP-CTF. These parameters were determined by fitting adsorption isotherms for temperatures ranging from 278 K to 473 K.

,

2,5-DCP-CTF-0:
$$q = q_A + q_B = \frac{q_{sat,A}b_Ap}{1+b_Ap} + \frac{q_{sat,B}b_Bp}{1+b_Bp}$$

 $q_{sat,A} = 213.60 \text{ cm}^3/\text{g}$
 $q_{sat,B} = 34.03 \text{ cm}^3/\text{g}$
 $b_A = b_{A0} \exp\left(\frac{E_A}{RT}\right)$;
 $b_{A0} = 2.38 \times 10^{-7} \text{ KPa}^{-1}$
 $E_A = 17.12 \text{ kJ mol}^{-1}$
 $b_B = b_{B0} \exp\left(\frac{E_B}{RT}\right)$
 $b_{B0} = 7.94 \times 10^{-7} \text{ kPa}^{-1}$
 $E_B = 32.55 \text{ kJ mol}^{-1}$

Table S2. Overview of the detailed parameters determined by fitting adsorption isotherms for temperatures ranging from 273 K to 298 K.								
entry	$q_{sat,A}$	$q_{sat,B}$	$b_{\scriptscriptstyle A0}$	E_A	$b_{\scriptscriptstyle B0}$	E_B	Q_{st}	
	cm³/g	cm³/g	KPa ⁻¹	kJ mol ⁻¹	KPa⁻¹	kJ mol ⁻¹	kJ mol ⁻¹	
2,5-DCP-CTF-0	213.60	34.03	2.38x10 ⁻⁷	172.12	7.94x10 ⁻⁷	32.55	32.55	
2,5-DCP-CTF-1	192.97	32.32	1.42x10 ⁻⁶	19.26	1.03x10 ⁻⁶	27.66	27.66	
2,5-DCP-CTF-2	239.99	20.94	3.36x10 ⁻⁷	21.69	1.07x10 ⁻⁷	31.88	31.88	
2,5-DCP-CTF-3	240.12	19.06	3.32x10 ⁻⁷	18.59	1.08x10 ⁻⁷	30.06	30.06	
2,5-DCP-CTF-4	86.78	15.51	8.80x10 ⁻¹⁰	21.45	1.77x10 ⁻¹⁰	32.03	32.03	

Scheme S1 Cycloaddition of CO_2 to different starting epoxides.

Table S3 Synthesis of cyclic carbonates from epoxides and CO_2 catalyzed by 2,5-DCP-CTF-0.

Entry	For excision	Commentary (or [b]	Selectivity	Yeild
	Epoxide	Conversion/% ¹²³	/% ^[b]	/%
1 ^[a]	epbromohydrin	97.5	85.6	83
2 ^[a]	propyleneoxide	98.4	41.5	41
3 ^[a]	styreneoxide	51.9	95.0	49

[a] Reaction conditions: 18 mmol epichlorohydrin, 100 mg catalyst, 130 $^\circ\!{\rm C}$, 10 bar CO₂, 4 h, without solvent.

[b] Determined by GC-MS using toluene as internal standard.

Fig. S3 Density field for CO₂ in 2,5-DCP-CTF at 273 K and 30 bar (blue: N; gray: C; white: H) computed by Sorption.