Supplementary Information

Boosting Visible-light-driven Hydrogen Evolution of Covalent Organic

Frameworks through Compositing with MoS₂: A Promising Candidate

of Noble-Metal-Free Photocatalysts

Meng-Yao Gao,^a Chang-Cheng Li,^a Hong-Liang Tang,^a Xiao-Jun Sun,^{*a} Hong Dong,^a and Feng-Ming Zhang^{*a}

^{a.} Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering Harbin University of Science and Technology No. 4, Linyuan Road, Harbin 150040 (China).

The Turnover frequency (TOF) was calculated according to following equation:

 $TON = \frac{Moles of evolved hydrogen}{Moles of MoS_2 on photocatalyst}$

Figure S1. The XRD patterns of TpPa-1-COF in different reaction solvent.

Figure S2. The FT-IR Spectra of samples with different loading amount of MoS_2 from 0 wt% to 5 wt%.

Figure S3. SEM image of bulk MoS₂.

Figure S4. EDS spectra of MoS₂-3%/TpP-1-COF.

Figure S5. TEM image of TpPa-1-COF.

Figure S6. XPS survey spectrum of MoS₂-3%/TpPa-1-COF.

Figure S7. The pore size distribution curves for TpPa-1-COF and MoS₂-3%/TpPa-1-COF.

Figure S8. Mott-Schottky plots of TpPa-1-COF at three different frequencies.

Figure S9. Mott-Schottky plots of MoS₂-3%/TpPa-1-COF at three different frequencies.

Figure S10. Comparison of the photocatalytic hydrogen evolution of MoS_2 -3%/TpPa-1-COF under different sacrificial systems.

Figure S11. Comparison of the photocatalytic hydrogen evolution of TpPa-1-COF in different reaction solvent.

Figure S12. Average photocatalytic H_2 evolution rate of TpPa-1-COF and $MoS_2/TpPa-1-COF$ photocatalysts with varying MoS_2 loading.

Figure S13. Photocatalytic H_2 evolution rates for TpPa-1-COF with varying amounts (2 wt%, 3 wt% and 4 wt%) of Pt as cocatalyst.

Figure S14. The XRD patterns of TpPa-2-COF and MoS₂-3%/TpPa-2-COF.

Figure S15. Photocatalytic H₂ evolution rates for TpPa-2-COF and MoS₂-3%/TpPa-2-COF.

Figure S16. The XRD patterns of MoS_2 -3%/TpPa-1-COF composite before and after photocatalytic reaction.

Figure S17. The IR spectrum of MoS_2 -3%/TpPa-1-COF composite before and after photocatalytic reaction.

Figure S18. The SEM image of MoS₂-3%/TpPa-1-COF composite after photocatalysis.

Figure S19. EPR spectra of TpPa-1-COF with light on and off.

Figure S20. EPR spectra of MoS₂-3%/TpPa-1-COF with light on and off.

Catalyst	Cocatalyst	Sacrificial	Illumination	Activity,	AQE	Ref
TpPa-1-COF	MoS ₂	Ascorbic	λ> 420 nm	5585	0.76%	This work
TpPa-1	Pt	Ascorbic acid	λ> 420 nm	5479	-	This work
TFPT-COF	Pt	Sodium ascorbate	λ> 420 nm	230	-	1
TFPT-COF	Pt	TEOA	λ> 420 nm	1970	2.2-3.9%	2
N ₀ -COF	Pt	TEOA	λ> 420 nm	23	0.001%	2
N ₁ -COF	Pt	TEOA	λ> 420 nm	90	0.077%	2
N ₂ -COF	Pt	TEOA	λ> 420 nm	438	0.19%	2
N ₁ -COF	Pt	TEOA	λ> 420 nm	1703	0.44%	2
PTP-COF	Pt	ΤΕΟΑ	λ> 420 nm	83.83	-	3
N ₂ -COF	Co-1 ^a	ΤΕΟΑ	AM 1.5	782	0.16%	4
N ₂ -COF	Co-2 ^b	TEOA	AM 1.5	414	-	4
N ₁ -COF	Co-1	TEOA	AM 1.5	100	-	4
N ₃ -COF	Co-1	TEOA	AM 1.5	163	-	4
COF-42	Co-1	TEOA	AM 1.5	233	-	4
g-C ₃ N ₄ nanosheets	Pt	TEOA	λ> 420 nm	1860	3.75%	5
g-C₃N₄	MoS ₂	Lactic acid	λ> 420 nm	1030	2.1%	6
S-doped mpg-CN	Pt	TEOA	λ> 420 nm	1360	5.8%	7
N-GQDs/g- C ₃ N ₄	Pt	TEOA	λ> 420 nm	2180	5.25%	8
CdS	Ni(OH) ₂	TEOA	λ> 420 nm	5084	28%	9
CdS	MoS ₂	Lactic acid	λ> 420 nm	5530	79.7%	10
ZnS	CuS	Na_2S and Na_2SO_3	λ> 420 nm	4147	20%	11
Zn _{0.8} Cd _{0.2} S	RGO	Na_2S and Na_2SO_3	AM 1.5	1824	23.4%	12
Cu ₂ O	MoS ₂	Methanol	λ> 420 nm	625	-	13
Mil-101/CdS	CDs	lactic acid	λ> 420 nm	488	-	14
g-C ₃ N ₄	Р	TEOA	λ> 420 nm	1596	3.56%	15
g-C ₃ N ₄	СоР	TEOA	λ> 420 nm	1924	12.4%	16
g-C ₃ N ₄ /CdS	NiS	TEOA	λ> 420 nm	2563	-	17
CdS	Fe ₂ P	Ascorbic acid	λ> 420 nm	186	15%	18

Table S1. Summary of H_2 evolution activity of photocatalyts.

g-C ₃ N ₄	MoS ₂	TEOA	λ> 400 nm	252	-	19
g-C ₃ N ₄	WS ₂	Methanol	λ> 420 nm	101	-	20
CdS/g-C ₃ N ₄	NiS	TEOA	λ> 420 nm	2563	-	21
g-C ₃ N ₄	Ni ₁₂ P ₅	TEOA	λ> 420 nm	126.6	-	22

^bCo-1: [Co(dmgH)₂pyCl]. ^cCo-2: [Co(dmgBF₂)₂(OH₂)₂]

Table S2. The fitting data of electrochem	ical impedance spectroscopy (EIS)
---	-----------------------------------

	TpPa-1-COF	MoS ₂ -3%/TpPa-1-COF
Rs	34.56	36.16
Rt	12666	5337
CPE-P	0.95	0.90
CPE-T	3.45E-5	4.39E-5

Reference

- 1. L. Stegbauer, K. Schwinghammer and B. V. Lotsch, Chem. Sci., 2014, 5, 2789-2793.
- V. S. Vyas, F. Haase, L. Stegbauer, G. Savasci, F. Podjaski, C. Ochsenfeld and B. V. Lotsch, *Nat. Commun.*, 2015, 6, 8508.
- F. Haase, T. Banerjee, G. Savasci, C. Ochsenfeld and B. V. Lotsch, *Faraday Discuss.*, 2017, 201, 247-264.
- T. Banerjee, F. Haase, G. k. Savasci, K. Gottschling, C. Ochsenfeld and B. V. Lotsch, J. Am. Chem. Soc., 2017, 139, 16228-16234.
- 5. S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang and P. M. Ajayan, *Adv. Mater.*, 2013, **25**, 2452-2456.
- Y. Hou, A. B. Laursen, J. Zhang, G. Zhang, Y. Zhu, X. Wang, S. Dahl and I. Chorkendorff, *Angew. Chem. Int. Ed*, 2013, **52**, 3621-3625.
- 7. J. Hong, X. Xia, Y. Wang and R. Xu, J. Mater. Chem., 2012, 22, 15006-15012.
- J.-P. Zou, L.-C. Wang, J. Luo, Y.-C. Nie, Q.-J. Xing, X.-B. Luo, H.-M. Du, S.-L. Luo and S. L. Suib, *Appl. Catal. B*, 2016, **193**, 103-109.
- 9. J. Ran, J. Yu and M. Jaroniec, Green Chem., 2011, 13, 2708-2713.
- K. Zhang, J. K. Kim, B. Park, S. F. Qia, B. Ji, X. W. Sheng, H. Zeng, H. Shin, S. H. Oh, C. L. Lee and J. H. Park, *Nano Lett.*, 2017, **17**, 6676-6683.
- 11. J. Zhang, J. Yu, Y. Zhang, Q. Li and J. R. Gong, Nano Lett., 2011, 11, 4774-4779.
- 12. J. Zhang, J. Yu, M. Jaroniec and J. R. Gong, Nano Lett., 2012, 12, 4584-4589.
- 13. Y.-F. Zhao, Z.-Y. Yang, Y.-X. Zhang, L. Jing, X. Guo, Z. Ke, P. Hu, G. Wang, Y.-M. Yan and K.-N. Sun, *J. Phys. Chem. C*, 2014, **118**, 14238-14245.
- X. B. Meng, J. L. Sheng, H. L. Tang, X. J. Sun, H. Dong and F. M. Zhang, *Appl. Catal. B*, 2019, 244, 340-346.
- J. R. Ran, T. Y. Ma, G. P. Gao, X. W. Du and S. Z. Qiao, *Energy & Environmental Science*, 2015, 8, 3708-3717.

- 16. C. M. Li, Y. H. Du, D. P. Wang, S. M. Yin, W. G. Tu, Z. Chen, M. Kraft, G. Chen and R. Xu, *Adv. Funct. Mater.*, 2017, **27**.
- J. Yuan, J. Wen, Y. Zhong, X. Li, Y. Fang, S. Zhang and W. Liu, J. Mater. Chem. A, 2015, 3, 18244-18255.
- 18. Z. J. Sun, H. L. Chen, Q. Huang and P. W. Du, Catalysis Science & Technology, 2015, 5, 4964-4967.
- 19. H. Zhao, Y. Dong, P. Jiang, H. Miao, G. Wang and J. Zhang, J. Mater. Chem. A, 2015, 3, 7375-7381.
- M. S. Akple, J. Low, S. Wageh, A. A. Al-Ghamdi, J. Yu and J. Zhang, *Appl. Surf. Sci.*, 2015, 358, 196-203.
- J. Yuan, J. Wen, Y. Zhong, X. Li, Y. Fang, S. Zhang and W. Liu, J. Mater. Chem. A, 2015, 3, 18244-18255.
- J. Wen, J. Xie, R. Shen, X. Li, X. Luo, H. Zhang, A. Zhang and G. Bi, *Dalton Trans.*, 2017, 46, 1794-1802.