Supporting Information

MXene/CNTs@P nanohybrid with stable Ti-O-P bonds for enhanced

lithium ion storage

Shixue Zhang,^{a,1} Huan Liu,^{b,1} Bin Cao,^a Qizhen Zhu,^a Peng Zhang,^a Xin Zhang,^a Renjie Chen,^b* Feng Wu^b and Bin Xu^{*a}

^a State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China 100029.

^b State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China

*Corresponding authors. E-mail: binxumail@163.com, xubin@mail.buct.edu.cn (B. Xu), chenrj@bit.edu.cn (R. Chen)

¹ Shixue Zhang and Huan Liu contributed equally to this work.

Fig. S1 XPS survey spectra of the samples (a). The O 1s spectra of $Ti_3C_2T_x@P$ (b) and $Ti_3C_2T_x/CNTs@P$ (c). The P 2p spectra of pure red P (d), $Ti_3C_2T_x@P$ (e) and $Ti_3C_2T_x/CNTs@P$ (f).

Fig. S2 Cycle performance and their columbic efficiencies of $Ti_3C_2T_x$ at a current density of 50 mA g⁻¹(a). Rate performance of $Ti_3C_2T_x$ at different current density (b).

Fig. S3 The cyclability of the pure CNTs anode.

Fig. S4 Cycle performances of $Ti_3C_2T_x/CNTs@P$ hybrids with different mass ratio of $Ti_3C_2T_x/CNT$ to P. The mass ratios of $Ti_3C_2T_x/CNTs$ to P for $Ti_3C_2T_x/CNTs@P-37$, $Ti_3C_2T_x/CNTs@P-55$ and $Ti_3C_2T_x/CNTs@P-64$ are 3:7, 5:5 and 6:4, respectively.

Fig. S5 Cycle performance and their columbic efficiencies of all composites at a current density of 0.05 C (a). Rate performance of all composites at different current density (b). The specific capacity is calculated based on the mass of composite.

Fig. S6 SEM (a) and TEM (b) images of $Ti_3C_2T_x/CNTs@P$ electrodes after 500th cycle.

The cell voltage is linearly proportional to $\sqrt{\tau}$, as shown in Fig. S6a. The diffusion coefficient (D) can be calculated from the GITT potential profiles by Fick's second law, as the following equation:

$$D = \frac{4}{\pi\tau} \frac{m_B V_M}{(M_B S)^2} \frac{\Delta E_s}{\Delta E_{\tau}^2}$$
 (equation S1)

The τ is the titration time, m_B is the electrode active material mass, S is the geometric area of the Cu foil electrode, ${}^{\Delta E_s}$ is the quasi-thermodynamic equilibrium potential difference before and after the current pulse, ${}^{\Delta E_{\tau}}$ is the potential difference during current pulse, V_M is the molar volume, M_B is the molar mass.

Fig. S7 Linear behavior of the potential $vs \cdot \sqrt{\tau}$ relationship in GITT at 1.824 V vs. Li⁺/Li of forth lithiation process of Ti₃C₂T_x/CNTs@P for LIBs (a). Chemical diffusion coefficients of Li⁺ as a parameter of voltage calculated by GITT for lithiation (b).