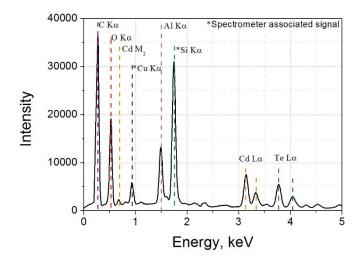
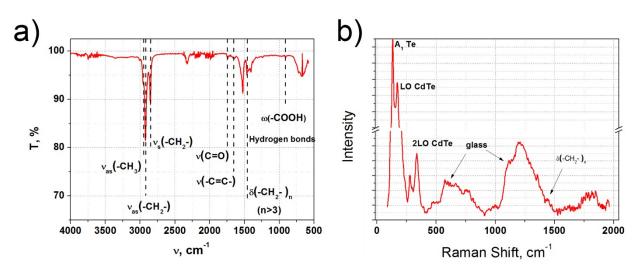
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supplementary information

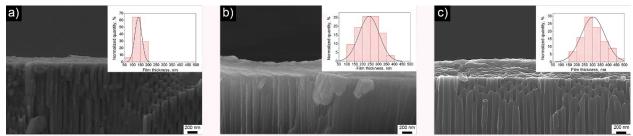

Labyrinthine transport of hydrocarbons through the grafted laminar CdTe nanosheet membranes.

Dmitrii Petukhov^{a,b}, Ilia Sadilov^{*a}, Roman Vasiliev^{a,b}, Larisa Kozina^b, Andrei Eliseev^a

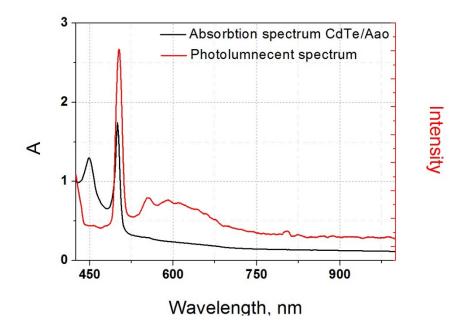
^a - Department of Materials Science, Lomonosov Moscow State University, Moscow 119991 Leninskie gory 1-73, Russia

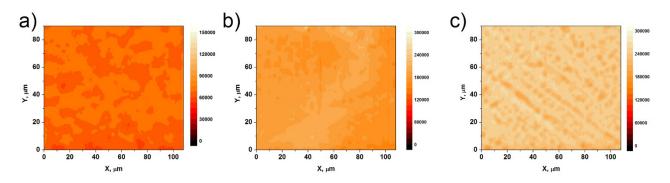

^b - Department of Chemistry, Lomonosov Moscow State University, Moscow 119991 Leninskie gory 1-3, Russia

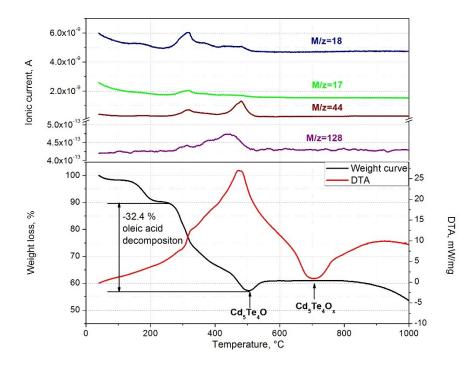
Corresponding author Ilia Sadilov, e-mail: ilsadilov@yandex.ru

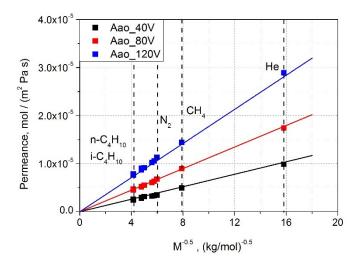


Element	Line Type	At. %	At. % Sigma
С	K series	66.99	0.22
0	K series	19.48	0.15
Al	K series	4.13	0.02
Cd	L series	5.14	0.02
Те	L series	4.27	0.02


SI 1: Results of CdTe nanosheets EDX characterization


SI 2. Results of CdTe nanosheets characterization with IR (a) and Raman spectroscopy (b)


SI 3. Cross sectional SEM micrographs of CdTe/AAO membranes


SI 4: Optical absorption and photo luminescent spectra of CdTe nanosheets.

SI 5. Results of photo luminescent mapping of membranes selective layer (a) CdTe/AAO40V, (b) CdTe/AAO80V, (c) CdTe/AAO120V.

SI6: Thermal analysis results and MS-signal for mass number 18, 17 (H_2O), 44 (CO_2) and 128 (Te) for CdTe nanoflakes. This experiment was performed in air by heating to 1000 °C at 5 °C/min heating rate.

SI7. Permeance of initial AAO supports vs inverse square root of gas molecular weight. All measurements were performed at 25°C.

SI 8. Calculation of selective layer permeance

Permeance (*F*) of asymmetric membrane depends both on permeance of selective ($F_{selective}$) and supporting layer ($F_{supporting}$) according to following equation ⁷:

$$\frac{1}{F} = \frac{1}{F_{selective}} + \frac{1}{F_{supporting}}$$
(8.1)

Taking into account permeance of AAO support the permeance of selective layer can be calculated as:

$$F_{selective} = \frac{1}{\frac{1}{F} - \frac{1}{F_{supporting}}}$$
(8.2)

Permeability of selective layer can be calculated taking into account thickness of selective layer:

$$P_{selective} = F_{selective} \cdot l \tag{8.3}$$

SI 9: Derivable diffusion coefficients for different gases in grafted Vycor glasses ¹ and grafted AAO membranes ², taking into account sorption coefficients measured in the current work and the thickness of membrane given in ^{1,2}.

Gas	Grafted Vycor glass membrane		Grafted AAO membrane	
	Permeability x10 ¹² ,	D x10 ⁹ , m ² /s	Permeability x10 ¹² ,	$D x 10^9, m^2/s$
	$mol \cdot m/(m^2 \cdot Pa \cdot s)$		$mol \cdot m/(m^2 \cdot Pa \cdot s)$	
N ₂	4.7	7.0	0.04	0.57
O ₂			0.08	1.07
CH ₄			0.12	0.82
C ₂ H ₆	35	13.9	0.20	0.81
CO ₂	38	42.5	0.43	4.78
C ₃ H ₈			0.97	2.02
i-C ₄ H ₁₀	105	13.7	1.26	1.65
$n-C_4H_{10}$	241	20.7	2.33	2.00

SI 10: Theoretical calculation of liquid butane permeance in CdTe nanosheets layer Liquid flux through the slit-like pore can be calculated using Poiseuille equation:

$$J = \frac{h^3}{12\mu} \cdot \frac{dP}{L} \tag{8.1}$$

where h – thickness of oleic acid layer available for diffusion (2.1 nm), μ – condensate viscosity, dP – pressure difference, L – diffusion length.

Diffusion length, concerning labyrinthine flow of condensate can be calculated as:

$$L = \frac{L_{av}}{4} \cdot \frac{l}{d_{int}} \tag{8.2}$$

where L_{av} – average lateral size of CdTe nanosheet (260 nm), d_{int} – interflake distance equal to 3.4 nm and l – selective layer thickness.

To obtain value of membrane permeance the equation (8.1) should be normalized to dP, available area for liquid flow (*A*) and multiplied on the total width of slits:

$$P = \frac{h^3}{12\mu} \cdot \frac{4}{L_{av}} \cdot \frac{d_{int}}{l} \cdot \left(L_{av} \frac{1}{L_{av}^2}\right) \left(L_{av} h \frac{1}{L_{av}^2}\right)^{-1} = \frac{h^2 d_{int}}{3\mu \cdot L_{av} \cdot l}$$

$$\tag{8.3}$$

To convert the results calculated using eq. 8.3 from liquid volume to gas volume (STP) we

$$\frac{\rho V_m}{M}$$

should multiply the equation to factor $I^{M}r$

$$P = \frac{h^2 d_{int}}{3\mu \cdot L_{av} \cdot l} \frac{\rho V_m}{M_r}$$
(8.4)

Calculated permeance membrane on the assumption of butane liquid flow through the membrane is equal $7.5 \cdot 10^{-6} \text{ mol}/(\text{m}^2 \cdot \text{Pa} \cdot \text{s})$.

SI 11: Theoretical calculation of activation energy of butane molecules hopping diffusion.

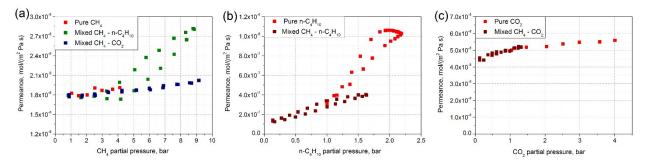
For estimation activation energy of butane diffusion, we can use the following equation describing molecules hopping diffusion:

$$J = \frac{L_{jump}}{L_{labirint}} \cdot N \cdot f_0 \cdot e^{-\frac{E_a}{kT}}$$
(9.1)

where L_{jump} – is an average jump length, $L_{labirint}$ – total traveling distance of molecule in selective layer, f_0 – frequency of butane molecule jump, N – number of molecules in selective layer, E_a – activation energy of diffusion.

L_{labirint} can be calculated as:

$$L_{labirint} = \frac{L_{av}}{4} \cdot \frac{l}{d_{int}}$$
(9.2)


Number of molecules in selective layer can be estimated using sorption constant for required pressure and taking into account the volume of oleic layers:

$$N = h \cdot A \cdot \rho_{oleic} \cdot K_{sorption} \tag{9.3}$$

We unable to found the simulation of butane molecules diffusion in grafted layer, so we used the average values of molecule residence time in free volume of PDMS equal to 5 ps and the length of jump equal to 11 Å^3 .

The calculated values of activation energy for butane molecule jump at different feed pressure conditions are listed in the following table:

Pressure difference, bar	Membrane permeance x10 ⁷ , mol/(m ² ·Pa·s)	Sorption constant, mmol/g(grafted)	Activation energy, eV
1	3	1.3	0.32
1.25	4.8	1.5	0.31
1.5	7.9	2.0	0.30
1.71	9.7	3.8	0.30
2	11	6.9	0.31
2.18	10	13.5	0.31

SI 12. Permeance pure and mixed gases against partial pressure for methane (a), n-butane (b), carbon dioxide (c). Feed streams containing 85.5 vol. % CH₄ with 14.5 vol. % n-C₄H₁₀ and 87.5 vol. % CH₄ with 12.5 vol. % CO₂. All measurements were performed at 25°C.

References

- 1 R. P. Singh *et al, Ind. Eng. Chem. Res.*, 2004, **43**, 3033–3040.
- 2 I. S. Sadilov et al, Sep. Purif. Technol., 2019, 221, 74–82.
- 3 S. G. Charati; S. A. Stern, *Macromolecules*, 1998, **31**, 5529–5535.