Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Hollow CuS nanocube cathode for rechargecharge Mg batteries:

Effect of structure on the performance

Jingwei Shen,^a Yujie Zhang,^a Dong Chen,^a Xue Li,^a Zhongxue Chen,^a Shun-an Cao,^a

Ting Li*b and Fei Xu*a

^a Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China

^b Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission, Ministry of Education, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.

* E-mail:

Fei Xu (xufei2058@whu.edu.cn)

Ting Li (liting@mail.scuec.edu.cn)

Supplementary data: Additional figures and tables as mentioned in the text

1. Lab-made cell for the Mg battery test

Fig. S1 (a) Schematic drawing and (b, c, d) photos of the lab-made PTFE cell used for Mg battery tests. The cell is made of customer-designed PTFE cell body and carbon rod electrode (with a copper rod inserted in). Epoxy resin is used to fix the carbon electrode and seal the crack. PTFE tape is used for the sealing during the Mg cell fabrication.

2. Appearance comparison

Fig. S2 Hollow CuS nanocube (left) and commercial CuS (right) with the same mass.

3. EDX spectra of CuS-I

<mark>(a)</mark>	CuS-I	(b) a	CuS-I
	<u>2.5µm</u>		
(c)	Element	Weight%	Atomic%
	Cu	73.40	58.20
	S	26.6	41.80
	Total	100	100

Fig. S3 SEM image and EDX spectra

4. XPS spectra

Fig. S4 XPS spectra (Cu 2p) of (a) CuS-II and (b) CuS-III, (c) S 2p spectra, and (d) full spectra.

5. The charge/discharge curves and cycling performance of carbon cloth

Fig. S5 The charge/discharge curves and cycling performance of carbon cloth.

6. Rate performance

Fig. S6 Rate performance of CuS-I and CuS-II.

7. CV curves of CuS-III and CuS-III electrodes

Fig. S7 CV curves of CuS-III and CuS-III electrodes

8. Determination of Mg²⁺ diffusion coefficient for CuS-I and CuS-II

Fig. S8 Log(i) vs. log(v) plots for different redox peaks of CuS-I and CuS-II electrodes.

Table S1 Calculation of Mg²⁺ diffusion coefficients

	CuS-I			CuS-II		
peak	$i_{\rm p}/v^{1/2}$	D (×10 ⁻⁹ cm ² s ⁻¹)	$i_{ m p}/v^{1/2}$	<i>D</i> (×10 ⁻⁹ cm ² s ⁻¹)		
C2	-0.1193	8.158	-0.1479	5.571		
C1	-0.3825	83.86	-0.4726	56.89		
A2	0.3816	83.47	0.4595	53.77		
A1	0.4475	114.8	0.3999	40.73		

The diffusion coefficient of Mg^{2+} is calculated by the following equation:

$$i_{\rm p}=2.69\times10^5 n^{3/2} {\rm A} D^{1/2} v^{1/2} C_{\theta}$$

where i_p is the peak current (A), *n* is the number of electrons per molecule during the reaction, *A* is the contact area between the electrode and electrolyte, *D* is the diffusion coefficient of Mg²⁺ (cm² s⁻¹), *C*₀ is the concentration of Mg²⁺ ion in the electrode material, and *v* is the scan rate (V s⁻¹).