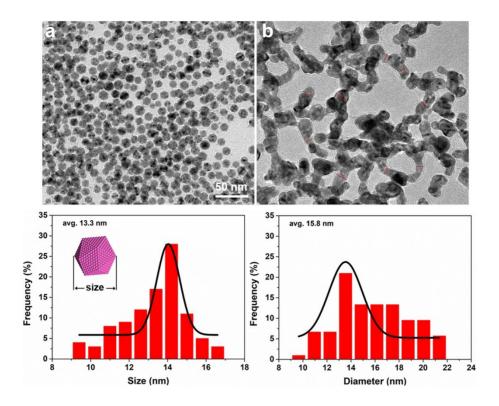
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

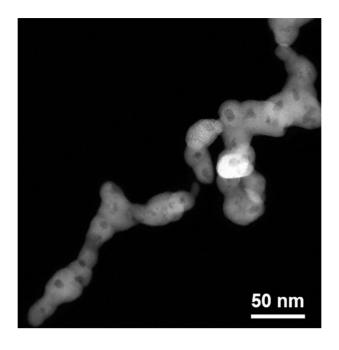
Supplementary Information for

Tunable synthesis of multiply-twinned intermetallic Pd₃Pb nanowire networks toward efficient N₂ to NH₃ conversion

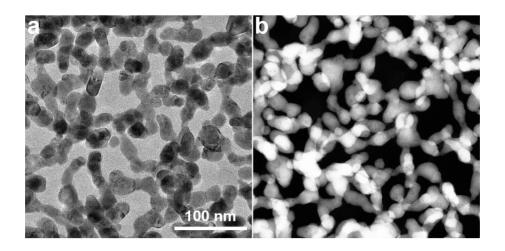
Jingchun Guo,^a Hui Wang,^b Fei Xue,^c Dan Yu,^b Li Zhang,^b Shilong Jiao,^a Yihui Liu,^b Yangfan Lu,^d Maochang Liu,^c Shuangchen Ruan,^a Yu-Jia Zeng,*a Chao Ma,*b and Hongwen Huang*bd

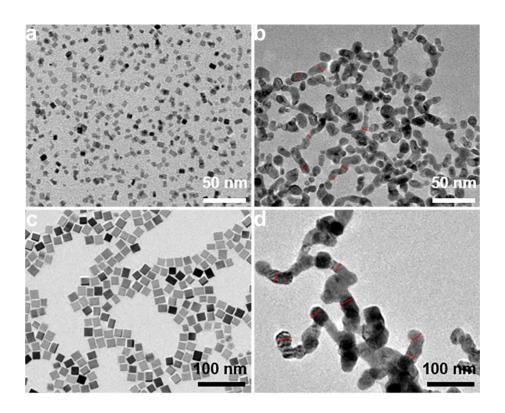

^a Shenzhen Key Laboratory of Laser Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. China.

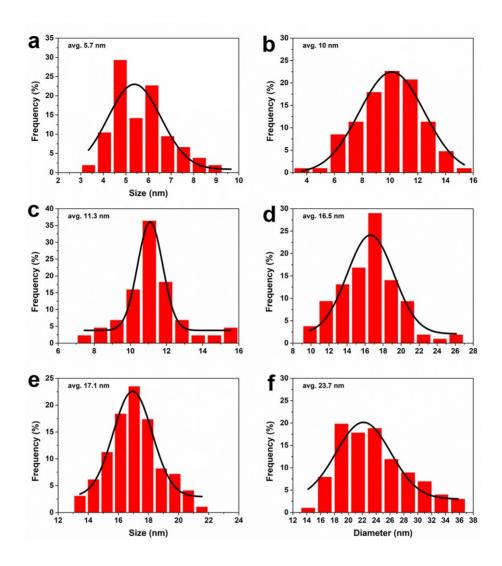
^b College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P. R. China.

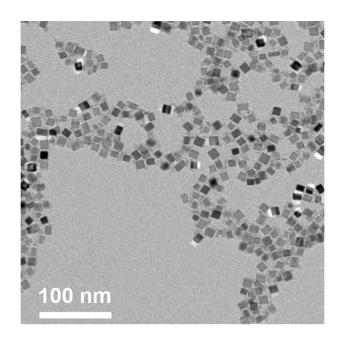

^c International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China.

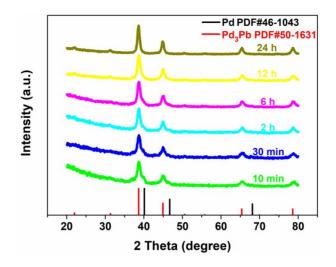
^d State Key Lab of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.


Correspondence and requests for materials should be addressed to Y.-J.Z. (email: yjzeng@szu.edu.cn), C.M. (email: cma@hnu.edu.cn) or to H.H. (email: huanghw@hnu.edu.cn).

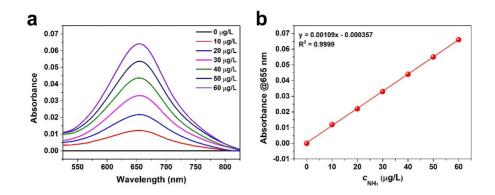

Supplementary Figure S1. The TEM images of Pd icosahedra with average sizes of (a) 13.3 nm and (b) the corresponding synthesized Pd₃Pb MT-IM-PNNs with average diameter of 15.8 nm. The scale bars in (a) and (b) are 50 nm as shown in (a). The red lines in (b) represent the diameter of MT-IM-PNNs.

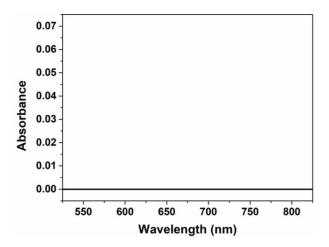

Supplementary Figure S2. Low-magnification HAADF-STEM image of Pd₃Pb MT-IM-PNNs.

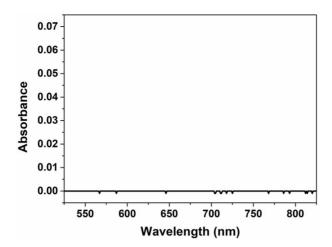

Supplementary Figure S3. (a) TEM image, and (b) Low-magnification HAADF-STEM image of Pd₃Pb MT-IM-NNs. The scale bars in (a) and (b) are 100 nm as shown in (a).

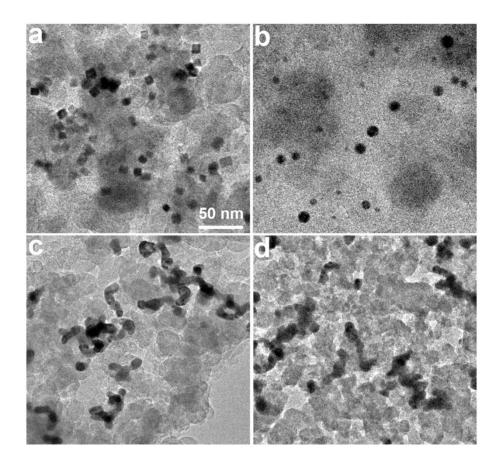

Supplementary Figure S4. The TEM images of Pd cubes with average sizes of (a) 5.7 nm and (c) 17.1 nm, respectively. (b) and (d) are the corresponding synthesized Pd₃Pb MT-IM-NNs.

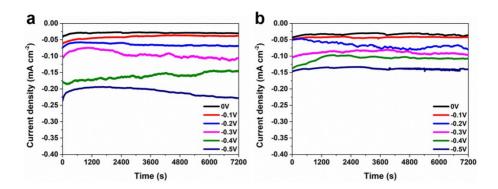
Supplementary Figure S5. The size distributions of different Pd cubes with average sizes of (a) 5.7 nm, (c) 11.3 nm and (e) 17.1 nm, respectively. (b), (d) and (f) are the diameter distributions of corresponding synthesized Pd₃Pb MT-IM-NNs with average diameters of (a) 10 nm, (c) 16.5 nm and (e) 23.7 nm, respectively.

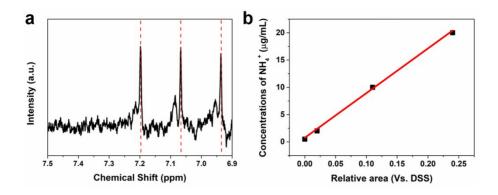

Supplementary Figure S6. The TEM images of Pd cubes, which were obtained by mixing 1.42 mg Pd cubes, 105 mg PVP and 4 mL DEG without Pb(acac)₂ at 180 °C for 24 h.

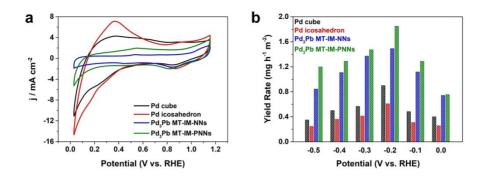

Supplementary Figure S7. Time-dependent XRD patterns of Pd₃Pb MT-IM-NNs.

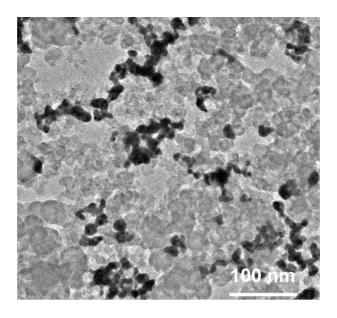

Supplementary Figure S8. Illustration of oriented-attachment formation mechanism using Pd cubes as seeds.

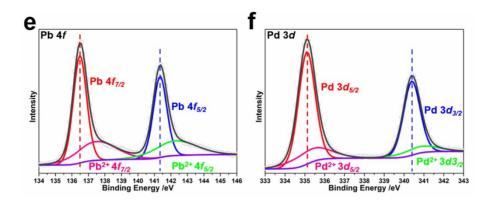

Supplementary Figure S9. Determination of the produced NH₃ in 0.1 M Na₂SO₄. (a) The UV-Vis absorption spectra of various concentrations of standard NH₄Cl solutions in the presence of 0.1 M Na₂SO₄ and (b) corresponding calibration curve for the colorimetric NH₃ assay using the indophenol blue method.


Supplementary Figure S10. The UV-Vis absorption spectrum of Na₂SO₄ electrolyte, which was performed by putting the working electrode of Pd₃Pb MT-IM-PNNs into N₂-saturated electrolyte for 2.5 hours with an open circuit.


Supplementary Figure S11. The UV-Vis absorption spectrum of Na₂SO₄ electrolyte, which was performed by putting the working electrode of Pd₃Pb MT-IM-PNNs into Ar-saturated electrolyte with applied potential of -0.2 V vs RHE.


Supplementary Figure S12. TEM images of carbon black-supported (a) Pd cube, (b) Pd icosahedron, (c) Pd₃Pb MT-IM-NNs, and (d) Pd₃Pb MT-IM-PNNs, respectively. The scale bars are 50 nm as shown in (a).


Supplementary Figure S13. Chronoamperometric curves of (a) Pd₃Pb MT-IM-PNNs and (b) Pd₃Pb MT-IM-NNs at the corresponding potentials in N₂-saturated 0.1 M Na₂SO₄ electrolyte.


Supplementary Figure S14. (a) 1 H Nuclear magnetic resonance (NMR) spectrum of NH₄ $^{+}$ in Na₂SO₄ electrolyte after 24 h of electrochemical NRR test with applied potential of -0.2 V vs RHE. The Na₂SO₄ electrolyte was concentrated from 30 mL to 0.5 mL to improve the signal-tonoise ratio. (b) Linear relationship between the NH₄ $^{+}$ concentration and relative area vs. DSS. The standard curve was made as follows: A 0.5 mL of NH₄Cl solution with different concentration (from 0.5 to 20 µg/mL) was mixed with 0.1 mL D₂O and 0.1 mL 6 mM DSS solution added as an internal standard.

Supplementary Figure S15. (a) CV curves of Pd cube (black), Pd icosahedron (red), Pd₃Pb MT-IM-NNs (blue), and Pd₃Pb MT-IM-PNNs (olive) electrodes in N₂-saturated 0.1 M KOH electrolyte at a scan rate of 50 mV/s. (b) The NH₃ yield rates normalized by calculated ECSAs of Pd cube (black), Pd icosahedron (red), Pd₃Pb MT-IM-NNs (blue), and Pd₃Pb MT-IM-PNNs (olive).

Supplementary Figure S16. TEM images of carbon black-supported Pd₃Pb MT-IM-PNNs after stability test.

Supplementary Figure S17. XPS of (e) Pb 4f and (f) Pd 3d spectra of Pd₃Pb MT-IM-PNNs after NRR test.

Supplementary Table S1. Comparison of the NRR performance of Pd₃Pb MT-IM-PNNs with other electrocatalysts under ambient conditions.

Catalyst	Electrolyte	Potential (V vs. RHE)	Faradaic efficiency (%)	Yield rate (µg h ⁻¹ mg _{cat} ⁻¹)	Ref.
Noble metal-based electrocatalyst					
Pd ₃ Pb MT-IM-HNWs	0.1 M Na ₂ SO ₄	-0.2	21.46	18.2	This work
Au nanorods	0.1 M KOH	-0.2	3.88	1.648	1
Au Sub-Nanoclusters	0.1 M HCl	0.2	8.11	21.4	2
Au Nanoparticles	0.1 M PBS	0.1	8.2	4.4	3
Rh nanosheet	0.1 M KOH	-0.2	0.217	23.88	4
Pd _{0.2} Cu _{0.8} Nanocluster	0.1 M KOH	-0.2	0.7	2.8	5
Pd nanoparticles	0.1 M PBS	0.1	8.2	4.5	6
Pd ₃ Cu ₁ alloy	0.1 M KOH	-0.25	1.22	39.9	7
Noble metal-free electrocatalyst					
Bi ₄ V ₂ O ₁₁ /CeO ₂	0.1 M HCl	-0.2	10.16	23.21	8
MoS ₂ nanoflower	0.1 M Na ₂ SO ₄	-0.4	8.34	29.28	9
Mo ₂ C/C nanosheets	0.5 M Li ₂ SO ₄	-0.3	7.8	11.3	10
Nb ₂ O ₅ nanofiber	0.1 M HCl	-0.55	9.26	43.6	11
Hollow Cr ₂ O ₃ microspheres	0.1 M Na ₂ SO ₄	-0.9	6.78	25.3	12
BiVO ₄	0.2 M Na ₂ SO ₄	-0.5	10.04	8.6	13
Metal-free electrocatalyst					
B ₄ C nanosheet	0.1 M HCl	-0.75	15.59	26.57	14
Carbon nitride	0.1 M HCl	-0.2	11.59	8.09	15
N-doped porous carbon	0.1 M HCl	-0.2	1.45	15.7	16
Mesoporous boron nitride	0.1 M Na ₂ SO ₄	-0.7	5.5	18.2	17

Supplementary References

- (1) D. Bao, Q. Zhang, F. Meng, H. Zhong, M. Shi, Y. Zhang, J. Yan, Q. Jiang, and X. Zhang, *Adv. Mater.* 2017, **29**, 1604799.
- (2) M. Shi, D. Bao, B. Wulan, Y. Li, Y. Zhang, J. Yan, and Q. Jiang, *Adv. Mater.* 2017, **29**, 1606550.
- (3) S. Li, D. Bao, M. Shi, B. Wulan, J. Yan, and Q. Jiang, Adv. Mater. 2017, 29, 1700001.
- (4) H. Liu, S. Han, Y. Zhao, Y. Zhu, X. Tian, J. Zeng, J. Jiang, B. Xia, and Y. Chen, *J. Mater. Chem. A.* 2018, **6**, 3211–3217.
- (5) M. Shi, D. Bao, S. Li, B. Wulan, J. Yan, and Q. Jiang, Adv. Energy Mater. 2018, 8, 1800124.
- (6) J. Wang, L. Yu, L. Hu, Xin, G. Chen, H. Xin, and X. Feng, *Nat. Comm.* 2018, **9**, 1795.
- (7) F. Pang, Z. Wang, K. Zhang, J. He, W. Zhang, C. Guo, and Y. Ding, *Nano Energy* 2019, **58**, 834–841.
- (8) C. Lv, C. Yan, G. Chen, Y. Ding, J. Sun, Y. Zhou, and G. Yu, *Angew. Chem. Int. Ed.* 2018, **57**, 6073–6076.
- (9) X. Li, T. Li, Y. Ma, Q. Wei, W. Qiu, H. Guo, X. Shi, P. Zhang, A. Asiri, L. Chen, B. Tang, and X. Sun, *Adv. Energy Mater*. 2018, **8**, 1801357.
- (10) H. Cheng, L. Ding, G. Chen, L. Zhang, J. Xue, and H. Wang, *Adv. Mater.* 2018, **30**, 1803694.
- (11) J. Han, Z. Liu, Y. Ma, G. Cui, F. Xie, F. Wang, Y. Wu, S. Gao, Y. Xu, and X. Sun, *Nano Energy* 2018, **52**, 264–270.
- (12) Y. Zhang, W. Qiu, Y. Ma, Y. Luo, Z. Tian, G. Cui, F. Xie, L. Chen, T. Li, and X. Sun, *ACS Catal.*, 2018, **8**, 8540–8544.
- (13) J. Yao, D. Bao, Q. Zhang, M. Shi, Y. Wang, R. Gao, J. Yan, and Q. Jiang, *Small Methods* 2018, 1800333.
- (14) W. Qiu, X. Xie, J. Qiu, W. Fang, R. Liang, X. Ren, X. Ji, G. Cui, A. Asiri, G. Cui, B. Tang, and X. Sun, *Nat. Commun.*, 2018, **9**, 3485.
- (15) C. Lv, Y. Qian, C. Yan, Y. Ding, Y. Liu, G. Chen, and G. Yu, *Angew. Chem., Int. Ed.*, 2018, **57**, 10246–10250.

- (16) X. Yang, K. Li, D. Cheng, W. Pang, J. Lv, X. Chen, H. Zang, X. Wu, H. Tan, Y. Wang, and Y. Li, *J. Mater. Chem. A*, 2018, **6**, 7762–7769.
- (17) J. Zhao, X. Ren, X. Li, D. Fan, X. Sun, H. Ma, Q. Wei, and D. Wu, Nanoscale, 2019, 11, 4231-4235.