Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information

PEG/3D graphene oxide network form-stable phase change materials

with ultrahigh filling content

Jinjing Qiu,^a Xiaoqiao Fan,^a Yusheng Shi,^a Shufen Zhang,^a Xin Jin^b, Wentao Wang^c and Bingtao Tang^{*a,b}

a State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China

b Eco-chemical Engineering Cooperative Innovation Center of Shandong, Qingdao University of Science &

Technology, Qingdao 266042, PR China

c Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang

Sci-Tech University, Hangzhou 310018, PR China

Table S1. Components of PGCs.			
Sample	PEG content	Ca ²⁺ -GO content	
	(wt %)	(wt %)	
PGC0.5	99.5	0.5	
PGC1.0	99.0	1.0	
PGC2.0	98.0	2.0	
PGC4.0	96.0	4.0	
PGC6.0	94.0	6.0	

Fig. S1. Digital photographs of the reaction system for preparing GO gel before and after the Ca²⁺ cross-linking.

Fig. S2. Nitrogen sorption isotherm of GO aerogel cross-linked by Ca²⁺.

Fig. S3. EDS mapping of Ca on the surface of GO aerogel cross-linked by Ca²⁺.

Fig. S4. Rheological property of the PGC1.0 gel.

Sample	Filling	T_m (°C)	$T_f(^{\circ}C)$	ΔH_m	$\DeltaH_{\rm f}$
	(wt %)			(J/g)	(J/g)
PGC6.0	94.0	60.5	40.8	189.7	178.2
PGC4.0	96.0	60.0	40.8	202.3	195.2
PGC2.0	98.0	61.2	41.7	212.4	207.2
PGC1.0	99.0	61.0	41.7	218.3	212.0
PGC0.5	99.5	62.2	42.7	218.9	213.2
PEG6000		62.4	42.1	221.7	217.8

Table S2. Phase change temperatures and enthalpies of PGCs.

Table S3. Thermal conductivities of PGCs and corresponding increasing ratio relative to PEG6000

		to I L00000.	
Sample	Filling	Thermal conductivity	Increasing ratio for thermal
	(wt %)	$(W \cdot m^{-1} \cdot K^{-1})$	conductivity (%)
PGC6.0	94.0	0.396	87.7
PGC4.0	96.0	0.393	86.3
PGC2.0	98.0	0.384	82.0
PGC1.0	99.0	0.363	72.0
PGC0.5	99.5	0.344	63.0
Control sample	99.0	0.241	14.2
PEG6000	100.0	0.211	

The leakage tests for the PGCs, pure PEG6000, and the control sample were conducted on a horizontal heating plate with a constant temperature for 20 min with varying temperatures, as shown in Fig. S5. The samples were prepared as 25 mm diameter disks with 5 mm thickness, and a digital camera was used to record the state of the samples. The control sample was produced by the direct mixing of a 99 wt % PEG6000 with GO (the control group in Fig. S5). The pure PEG6000 and the control sample started melting at 65 °C. However, the shapes of prepared PGCs were maintained without leakage at 65 °C, which is higher than the working temperature (the temperature range of phase transition is between 40.0 °C to 63.0 °C).

Fig. S5. Digital photographs for leakage test of the PGCs, PEG6000, and the control sample at different temperatures: 30 and 65 °C.

Table S4. Comparison of form-stable CPCMs prepared in this work and references.					
Form-stable PCM	Preparation	Melting	The mass fraction of	Reference	
	method	enthalpy (J/g)	supporting material (wt		
			%)		
PEG/GO/Boron nitride	Physical blending	107.4	34	1	
PEG/GO	Physical blending	142.8	4	2	
PEG/3D porous carbon	Physical blending and impregnation	160.3	15	3	
PEG/Carbon nanotues/Metal- organic frameworks	Physical blending and impregnation	83.1	30	4	
PEG/Mesoporous silica	Blending and impregnation	88.2	30	5	
PEG/Graphene aerogel fiber	Impregnation	124	17	6	
PEG/GO/ Boron nitride	Vacuum Impregnation	145.6	19.0	7	
PEG/Diatomite/Ag	Vacuum Impregnation	111.3	37	8	
PEG/Ionic cross- linked GO	In situ filling by ionic cross-linking	218.9	0.5	This work	

As shown in Table S4, in order to get stable shape, a large amount of supporting materials (higher than 4 wt %) is needed in physical blending or impregnation method reported by other references. Due to the influence of these supporting materials, the melting enthalpies of the prepared CPCMs decrease below 160 J/g. Because of the excellent cross-linking ability of calcium ion, the 3D GO skeleton was rapidly formed to allow in situ filling more PEG in this study. The filling capacity reached to 99.5 wt %, and the melting enthalpy is 218.9 J/g, which is close enough to that of pure PEG. More importantly, the form-stable PGCs can be simply prepared through in situ filling by ionic cross-linking, which avoid re-impregnation.

Table S5. The thermal stability of the PGCs from TGA.				
Sample	Filling (wt	5% weight loss	Fast weight loss	Char yield at
	%)	temperature (°C)	temperature (°C)	800 °C (wt %)
PGC6.0	94.0	355.4	405.2	5.8
PGC4.0	96.0	363.7	408.1	4.5
PGC2.0	98.0	366.2	406.9	2.0
PGC1.0	99.0	370.4	407.8	1.6
PGC0.5	99.5	371.5	408.9	1.4
PEG6000		387.2	414.2	1.9

References

- J. Yang, L. Tang, R. Bao, L. Bai, Z. Liu, B. Xie, M. Yang and W. Yang, Sol. Energy Mater. Sol. Cells, 2018, 174, 56-64.
- 2 G. Qi, C. Liang, R. Bao, Z. Liu, W. Yang, B. Xie and M. Yang, *Sol. Energy Mater. Sol. Cells*, 2014, **123**, 171-177.
- 3 X. Chen, H. Gao, M. Yang, W. Dong, X. Huang, A. Li, C. Dong and G. Wang, *Nano Energy*, 2018, **49**, 86-94.
- 4 J. Wang, X. Huang, H. Gao, A. Li and C. Wang, *Chem. Eng. J.*, 2018, **350**, 164-172.
- 5 J. Wang, M. Yang, Y. Lu, Z. Jin, L. Tan, H. Gao, S. Fan, W. Dong and G. Wang, *Nano Energy*, 2016, **19**, 78-87.
- 6 G. Li, G. Hong, D. Dong, W. Song and X. Zhang, *Adv. Mater.*, 2018, **30**, 1801754.
- 7 J. Yang, L. Tang, R. Bao, L. Bai, Z. Liu, W. Yang, B. Xie and M. Yang, J. Mater. Chem. A, 2016, 4, 18841-18851.
- 8 T. Qian, J. Li, X. Min, W. Guan, Y. Deng and L. Ning, J. Mater. Chem. A, 2015, 3, 8526-8536.