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Table S1. Components of PGCs.

Sample PEG content Ca*"-GO content
(wt %) (wt %)

PGCO0.5 99.5 0.5

PGC1.0 99.0 1.0

PGC2.0 98.0 2.0

PGC4.0 96.0 4.0

PGC6.0 94.0 6.0
0.077 wt % CaZ*
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Fig. S1. Digital photographs of the reaction system for preparing GO gel before and
after the Ca?* cross-linking.
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Fig. S2. Nitrogen sorption isotherm of GO aerogel cross-linked by Ca?*,
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Fig. S4. Rheological property of the PGC1.0 gel.



Table S2. Phase change temperatures and enthalpies of PGCs.
Sample Filling T, (°C) T¢(°C) AH, A Hy

(Wt %) Vg (Vg
PGC6.0 94.0 60.5 40.8 189.7 178.2
PGC4.0 96.0 60.0 40.8 202.3 195.2
PGC2.0 98.0 61.2 41.7 2124 207.2
PGC1.0 99.0 61.0 41.7 218.3 212.0
PGCO0.5 99.5 62.2 42.7 218.9 213.2
PEG6000  -- 62.4 42.1 221.7 217.8

Table S3. Thermal conductivities of PGCs and corresponding increasing ratio relative

to PEG6000.
Sample Filling  Thermal conductivity Increasing ratio for thermal
wt%) (Wm!-K") conductivity (%)

PGC6.0 94.0 0.396 87.7

PGC4.0 96.0 0.393 86.3

PGC2.0 98.0 0.384 82.0

PGC1.0 99.0 0.363 72.0

PGCO0.5 99.5 0.344 63.0

Control sample  99.0 0.241 14.2

PEG6000 100.0 0.211 -

The leakage tests for the PGCs, pure PEG6000, and the control sample were
conducted on a horizontal heating plate with a constant temperature for 20 min with
varying temperatures, as shown in Fig. S5. The samples were prepared as 25 mm
diameter disks with 5 mm thickness, and a digital camera was used to record the state
of the samples. The control sample was produced by the direct mixing of a 99 wt %
PEG6000 with GO (the control group in Fig. S5). The pure PEG6000 and the control
sample started melting at 65 °C. However, the shapes of prepared PGCs were
maintained without leakage at 65 °C, which is higher than the working temperature

(the temperature range of phase transition is between 40.0 °C to 63.0 °C).
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Fig. S5. Digital photographs for leakage test of the PGCs, PEG6000, and the control
sample at different temperatures: 30 and 65 °C.

Table S4. Comparison of form-stable CPCMs prepared in this work and references.

Form-stable PCM Preparation Melting The mass fraction of Reference
method enthalpy (J/g)  supporting material (wt
%)
PEG/GO/Boron ) .
. Physical blending  107.4 34 !
nitride
PEG/GO Physical blending  142.8 4 2
PEG/3D porous Physical blendin
potot ¥ 81603 15 :
carbon and impregnation
PEG/Carbon ) .
Physical blending
nanotues/Metal- ] ] 83.1 30 4
. and impregnation
organic frameworks
PEG/Mesoporous Blending and
. . . 88.2 30 5
silica impregnation
PEG/Graphene )
Impregnation 124 17 6
aerogel fiber
PEG/GO/ Boron Vacuum
. . 145.6 19.0 7
nitride Impregnation
. . Vacuum
PEG/Diatomite/Ag . 111.3 37 8
Impregnation
PEG/Ionic cross- In situ filling by .
. o ST 218.9 0.5 This work
linked GO ionic cross-linking

As shown in Table S4, in order to get stable shape, a large amount of supporting
materials (higher than 4 wt %) is needed in physical blending or impregnation method

reported by other references. Due to the influence of these supporting materials, the
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melting enthalpies of the prepared CPCMs decrease below 160 J/g. Because of the
excellent cross-linking ability of calcium ion, the 3D GO skeleton was rapidly formed
to allow in situ filling more PEG in this study. The filling capacity reached to 99.5 wt
%, and the melting enthalpy is 218.9 J/g, which is close enough to that of pure PEG.
More importantly, the form-stable PGCs can be simply prepared through in situ filling

by ionic cross-linking, which avoid re-impregnation.

Table S5. The thermal stability of the PGCs from TGA.

Sample Filling (wt 5% weight loss Fast weight loss Char yield at
%) temperature (°C) temperature (°C) 800 °C (wt %)
PGC6.0 94.0 355.4 405.2 5.8
PGC4.0 96.0 363.7 408.1 4.5
PGC2.0 98.0 366.2 406.9 2.0
PGCI1.0 99.0 370.4 407.8 1.6
PGCO0.5 99.5 371.5 408.9 1.4
PEG6000 -- 387.2 414.2 1.9
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