Supporting Information

Electronic Reconfiguration of Co₂P Induced by Cu Doping for Enhancing Oxygen Reduction Reaction Activity in Zinc–Air Batteries

Lechen Diao^a, Tao Yang^a, Biao Chen^a, Biao Zhang^a, Naiqin Zhao^{a,b,c}, Chunsheng Shi^a, Enzuo Liu^{a,b,*}, Liying Ma^a, and Chunnian He^{a,b,c,*}

^a School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin, 300072, P. R. China

^b Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China

^c Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin, 300072, China.

* Corresponding Authors.

cnhe08@tju.edu.cn (C. He), ezliu@tju.edu.cn (E. Liu).

Fig. S1. Side views of atomic configurations for ORR intermediate states: a-d) Co₂P, e-h) Cu-Co₂P. (blue: Co, pink: P, red: O, white: H, brown: Cu).

Fig. S2. Structure of (a) Co_2P and (b) $Cu-Co_2P$. The inset cross section denotes the plane used to calculate the difference charge density in Fig. 1c,d.

Fig. S3. Density of states of a) Co₂P and b) Cu-Co₂P.

Fig. S4. SEM image of 7.1%Cu-Co₂P@NPC-aqueous. Polymerization occurred by adding aniline into the aqueous directly instead of interface polymerization.

Fig. S5. SEM image of 7.1%Cu-Co₂P@NPC. Polymerization occurred without adding GO into the aqueous.

Fig. S6. SEM image of Cu-Co₂P@2D-PG. Sintered 7.1%Cu-Co₂P anchored on P doped rGO.

Fig. S7. Raman spectrum of 7.1%Cu-Co₂P@2D-NPC.

Fig. S8. BET specific surface area and pore size distribution (insert) of (a) 7.1% Cu-Co₂P @2D-NPC and (b) 7.1%Cu-Co₂P@NPC-aqueous.

Fig. S9. High-resolution XPS spectrum of N 1s in the 7.1%Cu-Co₂P@2D-NPC.

Fig. S10. The performance of Cu-Co₂P@2D-NPC with different Cu doping ratio. (a) LSV plot, (b) onset potential and half-wave potential.

Fig. S11. The LSV plots of Cu-Co₂P@NPC-aqueous, Cu-Co₂P@NPC, and Cu-Co₂P@2D-PG.

Fig. S12. Tolerance toward the methanol of the 7.1%Cu-Co₂P@2D-NPC and Pt/C. Methanol was added at 1200 s.

Fig. S13. (a) OER polarization curves, (b) Tafel plots determined from (a), (c) i-t curves of different catalysts in O₂-saturated 0.1 M KOH.

Fig. S14. Discharging and charging polarization curves of ZAB based on the 7.1% Cu-Co₂P@2D-NPC and Pt/C+RuO₂.

	1#	2#	3#	4#	5#
Feed (%)	1	3	6	7.5	10
ICP-OES (%)	1.2	2.5	6.5	7.1	9.7

Table S1. The atom percentage of Cu in Cu-Co₂P@2D-NPC measured by ICP-OES

Catalyst	Loading Mass (mg cm ⁻²)	E _{onset} (V vs. RHE)	E _{1/2} (V vs. RHE)	J (mA cm ⁻²)	1A reference ²)	
Co-N/CNFs	0.1	0.92	0.82	5.2	ACS Catal. 2017, 7, 6864–6871	
Co ₂ P@CoNPG-900	2	0.90	0.81	6.68	Electrochimica Acta 231 (2017) 344–353	
Co-CoO/N-rGO	0.21	0.88	0.78	5.6	Adv. Funct. Mater. 2015, 25, 5799	
Cu ₃ P@NPPC-650	0.2		0.78	5.57	Adv. Mater. 2017, 1703711	
Co/CoO _x -perovskite nanofibers	0.5	0.95	0.76	6.2	Nano Energy 2017, 32, 247	
Co ₃ O ₄ /NCNT	3	0.9	0.81	5.3	Small, 2017, 13, 1700518	
Co ₂ P/N-HCR-2	0.357	0.962	0.81	5.52	J. Mater. Chem. A, 2017, 5, 17563–17569	
NCNT/CoO-NiO-NiCo	0.2	0.97	0.83	4.4	Angew. Chem. Int. Ed. 2015, 54, 9654 –9658	
Co ₂ P	0.14		0.196 vs AgCl	4.7	ACS Nano 2015, 9, 8, 8108-8115	
layer mesoporous Co ₃ O ₄ /N- rGO	0.128	0.90	0.79	5.34	Adv. Mater. 2018, 30, 1703657	
CoNiFe-S MNs	0.7	0.93	0.78	5.8	Adv. Energy Mater. 2018, 1801839	
Co/N-B-CSs	0.1	0.89	0.812	4.96	ACS Nano 2018, 12, 1894–1901	
7.1%Cu-Co ₂ P@NPC	0.25	0.95	0.835	5.2	This work	

 Table S2. Comparison of some Co-based ORR electrocatalysts in 0.1 M KOH solution

Catalyst	Loading mass (mg cm ⁻ ²)	Specific capacity (mAh g ⁻¹)	OCV (V)	Power density (mW cm ⁻²)	Stability	Ref.
Co–Nx–C	0.5	750 at 20.0 mA cm ⁻²	1.4	152	180 cycles for 60 h @ 2 mA cm ⁻²	Adv. Mater. 2017, 29, 1703185
CoN ₄ /NG	1	730	1.51	115	30 cycles for 100 h @10 mA cm ⁻²	Nano Energy 50 (2018) 691– 698
Co ₂ P/CoN-in- NCNTs	0.5	649.6 at 20.0 mA cm ⁻²	1.35	194.6	95 h @ 5 mA cm ⁻²	Adv. Funct. Mater. 2018, 1805641
Pb ₂ Ru ₂ O _{6.5}	0.85	-		195	600s/cycle for 200 cycles 33h	Energy Environ. Sci., 2017, 10, 129
C04N/CNW/CC	1		1.4	-	408 cycles 136 h @ 10 mA cm ⁻²	J. Am. Chem. Soc.2016, 138, 10226
Ni–MnO/rGO		758 at 5 mA cm ⁻²	-	123	$\begin{array}{c} 50 \text{ cycles} @ \\ 5 \text{ mA cm}^{-2} \end{array}$	Adv. Mater. 2017, 1704609
Co-N,B-CSs	0.2	-	1.43	100.4	14 h@ 5 mA cm ⁻²	ACS Nano, 2018, 12, 1894– 1901
NiCo ₂ S ₄ /N-CNT	1	554.6	1.49	147	150 cycles; 17 h	Nano Energy 2017, 31, 541
7.1%Cu-Co2P@NPC	1	736.8 at 10 mA cm ⁻²	1.4	236.1	480 cycles for 160 h @ 10 mA cm ⁻²	This work

 Table S3. Comparison of some recent aqueous rechargeable ZABs based on different

 catalysts

Catalyst	Loading mass (mg cm ⁻²)	Cell structure	OCV (V)	Power density (mW cm ⁻²)	Stability	Ref.
Co-Nx-C	1.5	Sandwich	1.44	29	18 cycles for 1 h @ 1 mA cm ⁻²	Adv. Mater. 2017, 29, 1703185 Angew
RuO ₂ -CNT sheet	-	Fiber	1.29	5.7 Wh L ⁻¹	30 cycles for 30 h @ 1 A g ⁻¹	Chem. Int. Ed. 2015, 54, 15390
Co ₄ N/Co-N-C	-	Cable	1.35	-	36 cycles for 12 h @ 1 mA cm ⁻²	J. Am. Chem. Soc. 2016, 138, 10226
N-doped porous carbon fiber	2	Sandwich	1.26	-	18 cycles for 6 h @ 2 mA cm ⁻²	Adv. Mater. 2016, 28, 3000 Adv.
CoO _x on carbon paper	1	Sandwich	1.4	44.1	30 cycles for 10 h @ 1 mA cm ⁻²	Energy Mater. 2016, 6, 1600476
CoN4/NG	1	Sandwich	-	28	30 cycles for 6 h @ 1 mA cm-2	Nano Energy 50 (2018) 691– 698
Co-N,B-CSs	0.5	Sandwich	1.345		stability for 22 h@ 2 mA cm ⁻²	ACS Nano, 2018, 12, 1894–1901
CuCo ₂ O ₄ /N-CNT	-	Sandwich	1.24	1.86 W g ⁻¹	27 cycles for 9 h @ 0.5 A g-1	Adv. Funct. Mater. 2017, 27, 1701833
Co ₃ O ₄ on carbon	_	Sandwich	1.32	-	30 cycles for 10 h @	Energy Mater.

 Table S4. Comparison of some recent flexible and rechargeable ZABs based on different

 catalysts and solid-state electrolytes

						2017, 7, 1700779
					20 cycles for	Small,
Co ₃ O ₄ /NCNT	3.0	Sandwich	1.3	-	20 h @	2017, 13,
					2 mA cm^{-2}	1700518
NiO/CaN nanowiros					50 cycles for	ACS Nano
on carbon cloth	-	Cable	1.34	-	500 min @	2017, 11,
on carbon cloth					3 mA cm^{-2}	2275
					96 cycles for	
7.1%Cu-Co ₂ P@NPC	1	Sandwich	1.42	52.5	32 h @	This work
					2 mA cm ⁻²	