Supporting Information

Monolithic Heteronanomat Paper Air Cathodes Toward Origami-Foldable/Rechargeable Zn-Air Batteries

Donggue Lee, \ddagger^a Hansol Lee, \ddagger^a Ohhun Gwon,^b Ohhun Kwon,^a Hu Young Jeong,^c Gunt ae Kim^a and Sang-Young Lee^a

^a Department of Energy Engineering, School of Energy and Chemical Engineering
^{ulsan} National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
^b Component Industry & Automotive Development Group, Component Solution Division,
Samsung Electro-Mechanics, Busan 46754, Republic of Korea
^c UNIST Central Research Facilities and School of Materials Science and Engineering, Ulsan
National Institute of Science and Technology (UNIST), Ulsan 44919, Korea

 \Box Corresponding author.

E-mail addresses: gtkim@unist.ac.kr (G. Kim), syleek@unist.ac.kr (S.-Y. Lee). ‡ These authors contributed equally to this work.

Figure S1. Schematic illustration of the synthetic procedure of NBSCF nanofibers by electrospinning.

Figure S2. HAADF-TEM and EDS elemental mapping images of the N-CNT/NBSCF mixture; scale bar 500 nm.

Figure S3. (a) ORR and (b) OER results of the NBSCF/N-CNT mixture with various ratios in 0.1 M KOH solution at 1600 rpm with a scan rate of 10 mV s⁻¹. (c) Ring current, (d) number of transferred electrons, and (e) peroxide percentage of ORR.

Figure S4. (a) Disc current, (b) ring current, (c) number of transferred electrons, and (d) peroxide percentage of the NBSCF/N-CNT mixture with NBSCF fiber, N-CNT, and Pt/C for comparison in 0.1 M KOH solution at 1600 rpm with a scan rate of 10 mV s⁻¹.

Figure S5. (a) ORR and (b) OER performance of the recently reported non-perovskite and perovskite electrocatalysts in alkaline solution (0.1 M KOH).

Figure S6. XPS spectra of (a), (d) Carbon 1s orbital, (b), (e) Nitrogen 1s orbital, and (c), (f) Oxygen 1s orbital of the NBSCF/N-CNT mixture and NBSCF/MWCNT mixture (control sample).

Figure S7. (a) ORR and (b) OER performance of the NBSCF/N-CNT mixture and NBSCF/MWCNT mixture (control sample).

Figure S8. Photographs showing dispersion stability of the cathode suspension: (a) without and (b) with a dispersion agent (SDS/urea = 5/5 (w/w)).

Figure S9. Photograph of the MH paper air cathode without CNFs.

Figure S10. Cross-sectional EDS mapping images (Nd, Ba, Sr, Co, Fe, N, C, O, and F elements are represented by the colored dots) of the MH paper air cathode.

Paper air cathode with 40 wt% of CNF

Figure S11. Photographs showing the water contact angle of the MH paper air cathodes with:

(a) 14 wt% CNF and (b) 40 wt% CNF.

Figure S12. Change in electrolyte content (expressed by relative mass of evaporated electrolyte) of the MH paper air cathode during the evaporation test (*i.e.*, exposure to ambient condition).

Figure S13. Schematic representation showing the assembly of the pouch-type Zn-air battery. The Zn-air battery was composed of MH paper air cathode, alkaline electrolyte-soaked CNF separator membrane, and Zn foil anode. The cell components were finally sealed with a paraffin film with holes that allow air passage.

gure S14. The results of cycling performance of the foldable Zn-air battery at a current density range of 2 - 10 mA cm⁻².

Figure S15. Photographs depicting origami folding-based stepwise fabrication procedure of

the paper airplane-shaped Zn-air battery.

Table S1. Comparison of ORR performance of this study with the previously reported non-perovskite/perovskite electrocatalysts in alkaline solution (KOH).

Publication	Catalysts	Electrolyte (M)	Electrode	J (mA cm ⁻²)	E (V vs RHE)	J _{0.6V} (mA cm ⁻¹)
This work	NBSCF/N-CNT	0.1	RRDE	1	0.78	4.46
This work	NBSCF	0.1	RRDE	1	0.56	0.93
This work	N-CNT	0.1	RRDE	1	0.70	2.53
This work	Pt/C	0.1	RRDE	1	0.90	4.73
ACS. Catal. 2014, 4, 1061	$Ba_{0.5}S_{r0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$	0.1	RRDE	1	0.33	0.0046
J. Am. Chem. Soc. 2016 , 138, 3541	BaTiO _{3-x}	0.1	RDE	1	~0.73	~2
Nat. Chem. 2011 , 3, 546	LaCu _{0.5} Mn _{0.5} O ₃	0.1	RDE	1	~0.71	~4.10
<i>Energy Environ.</i> <i>Sci.</i> 2016 , <i>9</i> , 176	$\begin{array}{c} La_{0.7}(Ba_{0.5}Sr_{0.5})_{0.3}C\\ o_{0.8}Fe_{0.2}O_{3-\delta}\end{array}$	0.1	RRDE	1	~0.72	
<i>Chem. Mater.</i> 2010 , <i>22</i> , 898	γ -MnO ₂	0.1	RDE	1	~0.66	~1.10
ACS Nano, 2017 , 11, 11594	PBSCF-NF	0.1	RRDE	1	0.73	4.13

 Table S2. Comparison of OER performance of this study with the previously reported non-perovskite/perovskite electrocatalysts in alkaline solution (KOH).

Publication	Catalysts	Electrolyte (M)	Electrode	J (mA cm ⁻²)	E (V vs RHE)	Overpotential (V)
This work	NBSCF/N-CNT	0.1	GC	10	1.67	0.44
This work	NBSCF	0.1	GC	10	1.63	0.40
This work	N-CNT	0.1	GC	10	-	-
This work	IrO ₂	0.1	GC	10	1.75	0.52
<i>J. Am. Chem. Soc.</i> 2012 , <i>134</i> , 3517	Mn ₃ O ₄ /CoSe ₂	0.1	GC	10	1.68	0.45
J. Am. Chem. Soc. 2010 , 132, 13612-13614	MnO _x thin film	0.1	GC	10	1.77	0.54
J. Am. Chem. Soc. 2013 , 135, 8452	α -MnO ₂ -SF	0.1	Graphite carbon	10	1.72	0.49
Angew. Chem. Int. Ed. 2014 , 53, 7584	Mn _x O _y /NC	0.1	GC	10	1.68	0.45
<i>Science</i> . 2011 , <i>334</i> , 1383	LaCoO ₃	0.1	GC	2	~1.69	0.46

Dublication	Electrode components		Electrolyte	Mechanical flexibility		OCV	Enougy donaity	Dowon donaity	Cuelo norformanas
rublication –	Anode	Cathode	Electrolyte	Deformation mode	Operating voltage	UCV	Energy density	rower density	Cycle performance
This work	Zn foil	NBSCF, N-CNT, CNF, PTFE	Nanocellulose membrane /KOH	Multiple-folded paper airplane	Disch. ~ 1.22 V Ch. ~ 1.92 V (at 1 mA cm ⁻²)	1.44 V	6.48 mWh cm ⁻² (at 1 mA cm ⁻²)	18.59 mW cm ⁻² (at 20 mA cm ⁻²)	> 75 cycles (at 1 mA cm ⁻² , 1.2 - 1.9 V)
<i>Adv. Mater.</i> 2016 , <i>28</i> , 3000	Zn foil	Carbon nanofiber	PVA gelled electrolyte	Bending (Not quantitatively estimated)	Disch. ~ $1.0 V$ Ch. = $1.78 V$ (at 2 mA cm ⁻²)	1.26 V	378 Wh kg ⁻¹ (at 2 mA cm ⁻²)	$\sim 2 \text{ mW cm}^{-2}$ (at 2 mA cm ⁻²)	Not provided for the flexible cell
J. Am. Chem, Soc. 2016 , 138, 10226	Zn belt	Co ₄ N/carbon network/carbon cloth	PVA/KOH	Bending (0, 30, 60, 90, 120°)	Disch. $\sim 1.2 \text{ V}$ (at 0.5 mA cm ⁻²)	1.35 V	$\sim 9.76 \text{ mWh cm}^{-2}$ (at 0.5 mA cm $^{-2}$)	$\sim 0.6 \text{ mW cm}^{-2} \\ (at \ 0.5 \text{ mA cm}^{-2})$	36 cycles (at 0.5 mA cm ⁻² , 1.19 – 1.96 V)
Adv. Energy Mater. 2017 , 7 1700779	Zn film	Co ₃ O ₄ /carbon cloth	PVA/KOH	Bending (bending radius = 51, 28, 13 mm)	Disch. ~ 1.04 V Ch. ~ 1.94 V 1.33 V (at 2.0 mA cm ⁻²)	1.33 V	$3 V \sim 546 Wh kg^{-1}$ (at 2 mA cm ⁻²)	$\sim 2.1 \text{ mW cm}^{-2}$ (at 2 mA cm ⁻²)	30 cycles (at 2 mA cm ⁻² , 1.02 - 1.97 V)
				(integrated with a flexible display)	(
Adv. Energy Mater. 2017 , 7, 1700927	Zn foil	MnO ₂ grown on graphene-coated carbon cloth	Crosslinked polyacrylic acid-based electrolyte	Bending (OCV, EIS) ex-situ folding (10, 50, 100 times)	Disch. ~ 1.29 V Ch. ~ 1.94 V (at 1.0 mA cm ⁻²)	1.4 V	-	~ 32 mW cm ⁻² (at approx. 52 mA cm ⁻²)	175 cycles (at 0.7 mA cm ⁻² , 1.3 – 1.9 V)
<i>Adv. Mater.</i> 2017 , <i>29</i> , 1602868	Electrodeposited Zn on carbon cloth	N-doped Co ₃ O ₄ /carbon cloth	PVA gelled electrolyte	Bending (Not quantitatively estimated)	-	1.1 V	$\sim 644 \text{ Wh kg}^{-1}$ (at 2.5 mA cm ⁻³)	-	-
Adv. Energy Mater. 2018 , 8 1800612	Zn foil	Sulfur-modified CaMnO ₃ /carbon cloth	PVA gelled electrolyte	Bending (0, 30, 60, 90, 120, 150°)	Disch. ~ 0.83 V Ch. ~ 1.83 V (at 1 mA cm ⁻²)	1.32 V	-	$\sim 3.3 \text{ mW cm}^{-2}$ (at 3 mA cm ⁻²)	> 10 hours (~ 20 cycles) (at 1 mA cm ⁻² , 1.15 - 1.83 V)
Energy Environ. Sci. 2018 , 11, 1723	Zn foil	Porphyrin COF, conductive carbon, PTFE, Nafion	PVA gelled electrolyte	Bending (0, 30, 90, 150, 180°)	Disch. ~ 1.22 V Ch. ~ 1.98 V (at 1 mA cm ⁻²)	1.39 V	-	$\begin{array}{c} 22.3 \ mW \ cm^{-2} \\ (at \sim 30 \ mA \ cm^{-1}) \end{array}$	Not provided for the flexible cell
<i>Adv. Mater.</i> 2019 , 1807468	Zn foil	1 nm-CoO _x / N-RGO/ Nafion/carbon cloth	PVA gelled electrolyte	Bending (0, 90, 180°)	Disch. ~ 1.25 V Ch. ~ 1.82 V (at 6 mA cm ⁻²)	1.39 V	_	600 W g ⁻¹ (at 200 mA cm ⁻²)	> 10 hours (~ 60 cycles) (at 6 mA cm ⁻² , 1.24 - 1.87 V)
<i>Carbon</i> 2019 , <i>144</i> , 370	Zn foil		PVA gelled electrolyte	Bending (0, 90, 180°)	Disch. ~ 1.18 V Ch. ~ 1.90 V (at 2 mA cm ⁻²)	1.35 V	-	41.8 mW cm ⁻² (at ~ 77 mA cm ⁻²)	> 25 hours (at 2 mA cm ⁻² , 1.18 – 1.9 V)

Table S3. Comparison of mechanical flexibility and electrochemical performances of the Zn-air batteries (this study vs. previous studies).

* COF: Covalent organic framework, PVA: Poly(vinyl alcohol), RGO: Reduced graphene oxide

* Energy/power densities and cycle performance data were directly provided or calculated from the results of the previous studies.