Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Suporting Information

Efficient Dye Nanofiltration of Graphene Oxide Membrane via Combining with Covalent Organic Framework by Hot Pressing

Guodong Kong^a, Jia Pang^a, Yucheng Tang^a, Lili Fan^b, Haixiang Sun^b, Rongming Wang^{a, b}, Shou Feng^a, Yang Feng^a, Weidong Fan^a, Wenpei Kang^{a, b}, Hailing Guo^c, Zixi Kang^{a, b,*}, Daofeng Sun^{a, b,*}

a College of Science, China University of Petroleum (East China), Qingdao, Shandong,266580, PR China.

b School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, PR China.

c State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corp. (CNPC), China University of Petroleum (East China), Qingdao, Shandong, 266580, PR China.

*E-mail: <u>kzx@upc.edu.cn</u> <u>dfsun@upc.edu.cn</u> Table of Contents

- I. Supporting figures
- II. Supporting tables
- III. Supporting references

I. Supporting figures

Fig. S1. (a) comparison of the FTIR of COF-TpPa with the monomer of 2,4,6-Trihydroxy-1,3,5-benzenetricarboxaldehyde and 1,4-diaminobenzene; (b) PXRD pattern of COF-TpPa and (c) TGA curves for COF-TpPa.

Fig. S2. (a) SEM, (b) TEM and (c) AFM images of COF-TpPa sample.

Fig. S3. (a) Particle size distribution of GO nanosheets from DLS; (b) AFM image and height profile of GO nanosheets.

Fig. S4 The N_2 adsorption isotherms at 77 K for the different membranes.

Fig. S5 Top-view SEM of pure COF-TpPa membrane (M5).

Fig. S6 Comparison of FTIR of different treated COF-TpPa/GO membrane

Fig. S7 The nanofiltration performance of three salt solutions (1000 ppm) on M2

Fig. S8 FTIR of HP-COF-TpPa/GO membrane after nanofiltration test.

Fig. S9 (a) Top-view and (b) cross-section SEM of HP-COF-TpPa/GO membrane after nanofiltration test.

II. Supporting tables

п	Membrane	$COE(50 \text{ mg } \text{I}^{-1})$	$GO(10 \text{ mg J}^{-1})$	HP
			OO(10 mg L)	process
M0	GO	0 mL	30 mL	No
M1	COF-TpPa/GO	25 ml	30 mL	No
M2	HP-COF-TpPa/GO	25 mL	30 mL	Yes
M3	HP-COF-TpPa/GO	30 mL	30 mL	Yes
M4	HP-COF-TpPa/GO	35 mL	30 mL	Yes
M5	COF-TpPa	25 mL	0 mL	No

Table S1 The composition of different membranes.

Membrane	Ra ^a	Rq ^b
M1	141.24	178.11
M2	121.76	159.21
M3	156.09	184.48
M4	201.18	246.85

Table S2 Roughness of different membranes measured by AFM.

a The mean roughness (Ra), b the root mean square of the Z value (Rq)

Table S3 Comparison of nanofiltration performance of different treated COF-TpPa/GO membrane

Treatment	Water permeance (L m ⁻² h ⁻¹ bar ⁻¹)	Rejection rate (%)	
None	226.28	68.57	
Vacuum annealing	170.25	78.18	
Hot-pressing	166.75	97.05	

	Crystal violet	Methylene blue	Acid chrome blue K	COF- TpPa
Chemical structure	HAR AND	-	and the second	the
Size ^a	13.05 Å×13.05 Å	13.17 Å×5.27 Å	16.82 Å×7.90 Å	14.8Å ^b
Mol. wt.	$393.95 \text{ g} \cdot \text{mol}^{-1}$	$393.95 \text{ g} \cdot \text{mol}^{-1}$	$586.42 \text{ g} \cdot \text{mol}^{-1}$	-
Charge	Positive	Positive	Negative	Positive

Table S4 The structure and property of dyes molecules and COF-TpPa in this study.

a the molecular sizes were calculated with ChemSketch.

b the pore size of COF material

Membrane	Dye	Pressure (bar)	P (L m ⁻² h ⁻¹ bar ⁻¹)	Rejection rate	Reference
	Crystal violet	1	135.20	08 2/1%	
		1	133.29	90.2470	
HP-COF-TpPa/GO	Methylene blue	1	166.8	97.05%	This work
	Acid chrome blue K	1	161.8	68.57%	
GO	Methylene blue	1	11.5	96.29%	[1]
GO/PAN	Methylene blue	2	23.33	97.6%	[2]
GO/Nylon	Methylene blue	1	11.13	98.97%	[3]
PEI-PDA/PES	Methylene blue	2	7.25	96.52%	[4]
UIO-66-GO	Methylene blue	-	15	98.7%	[5]
GO	Methylene blue	3.4	27.6	66%	[6]
PQ-10/PVA	Crystal violet	7	8	99.2%	[7]
PEI/PVA	Crystal violet	6	2.83	75.9%	[8]
PEI/CMCNa/PP	Crystal violet	3	13.4	97.9%	[9]
PA/UIO-66	Crystal violet	5	13	90%	[10]
PA/PPEA	Acid chrome blue K	10	18.4	99.2%	[11]
COF-LZU1	Chrome black T	5	75.6	98.2%	[12]
COF-LZU1	Acid Fuchsin	5	58.05	91.4%	[12]
COF-LZU1	Congo red	5	53.43	98.6%	[12]
COF-LZU1	Methyl blue	5	48.58	99.2%	[12]

Table S5 Summary of membrane NF performances from this work and references

Table S6 Comparison of nanofiltration performance of HP-COF-TpPa/GO membrane before and after etching treatment.

Etching treatment	Water permeance (L $m^{-2} h^{-1} bar^{-1}$)	Rejection rate (%)	
Original	166.75	97.05	
pH = 2	105.65	95.00	
pH = 7	121.91	94.67	
pH = 11	111.77	92.34	

III. Supporting references

- L. Chen, Y. Li, L. Chen, N. Li, C. Dong, Q. Chen, B. Liu, Q. Ai, P. Si, J. Feng, L. Zhang, J. Suhr, J. Lou and L. Ci, *Chemical Engineering Journal*, 2018, 345, 536-544.
- 2. C. Zhang, K. Wei, W. Zhang, Y. Bai, Y. Sun and J. Gu, *ACS applied materials & interfaces*, 2017, **9**, 11082-11094.
- L. Chen, J.-H. Moon, X. Ma, L. Zhang, Q. Chen, L. Chen, R. Peng, P. Si, J. Feng, Y. Li, J. Lou and L. Ci, *Carbon*, 2018, 130, 487-494.
- 4. R. Zhang, Y. Su, X. Zhao, Y. Li, J. Zhao and Z. Jiang, *Journal of Membrane Science*, 2014, **470**, 9-17.
- 5. K. Guan, D. Zhao, M. Zhang, J. Shen, G. Zhou, G. Liu and W. Jin, *Journal of Membrane Science*, 2017, **542**, 41-51.
- 6. M. Hu and B. Mi, *Environmental Science & Technology*, 2013, 47, 3715-3723.
- 7. Y. Zheng, G. Yao, Q. Cheng, S. Yu, M. Liu and C. Gao, *Desalination*, 2013, **328**, 42-50.
- 8. H. Tang, S. Ji, L. Gong, H. Guo and G. Zhang, *Polymer Chemistry*, 2013, 4, 5621-5628.
- 9. Q. Chen, P. Yu, W. Huang, S. Yu, M. Liu and C. Gao, *Journal of Membrane Science*, 2015, **492**, 312-321.
- 10. X. Cheng, X. Jiang, Y. Zhang, C. H. Lau, Z. Xie, D. Ng, S. J. D. Smith, M. R. Hill and L. Shao, *ACS applied materials & interfaces*, 2017, **9**, 38877-38886.
- 11. C. Wu, S. Zhang, D. Yang and X. Jian, *Journal of Membrane Science*, 2009, **326**, 429-434.
- 12. H. Fan, J. Gu, H. Meng, A. Knebel and J. Caro, *Angewandte Chemie International Edition*, 2018, **57**, 4083-4087.