Supporting Information

Zinc niobate materials: crystal structures, energy-storage capabilities

and working mechanisms

Xiangzhen Zhu^{a,b}, Haijie Cao^{a,*}, Renjie Li^b, Qingfeng Fu^b, Guisheng Liang^b, Yongjun Chen^b, Lijie Luo^b, Chunfu Lin^{a,b,*}, Xiu Song Zhao^{b,c}

^a Institute of Materials for Energy and Environment, School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China

^b State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China

^c School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia

* Corresponding authors. E-mail addresses: caohj1582@hotmail.com (H. Cao), linchunfu@qdu.edu.cn (C. Lin).

Fig. S1. XRD spectrum with Retveld refinement of $W_5Nb_{16}O_{55}$.

Fig. S2. Crystal structure of $W_5Nb_{16}O_{55}$.

Fig. S3. XRD spectra of Zn₂Nb₃₄O₈₇-N sintered at 850, 900, 1000, 1100 and 1200 °C

 $(\diamondsuit: ZnNb_2O_6).$

Fig. S4. (a) XPS survey spectra of Zn₂Nb₃₄O₈₇-B and Zn₂Nb₃₄O₈₇-N. XPS spectra of (b) Zn, (c) Nb and (d) O elements in Zn₂Nb₃₄O₈₇-B and Zn₂Nb₃₄O₈₇-N.

Fig. S5. (a, b) FESEM images of Zn₂Nb₃₄O₈₇-B.

Fig. S6. N₂ adsorption-desorption isotherms of Zn₂Nb₃₄O₈₇-B and Zn₂Nb₃₄O₈₇-N.

Fig. S7. (a) HRTEM image and (b) SAED pattern of Zn₂Nb₃₄O₈₇-B.

Fig. S8. EDX mapping images of Zn₂Nb₃₄O₈₇-B.

Fig. S9. Electrochemical performance of $W_5Nb_{16}O_{55}/Li$ cell (the fabrication process of the $W_5Nb_{16}O_{55}/Li$ cell is the same as that of the $Zn_2Nb_{34}O_{87}/Li$ cell): discharge– charge curves at (a) 0.1C and (b) different current rates, and (c) cyclability at 10C

over 1000 cycles.

Fig. S10. *E versus T* curves for a single step in GITT experiment of (a) Zn₂Nb₃₄O₈₇-B and (b) Zn₂Nb₃₄O₈₇-N. Linear behavior of *E versus τ*^{0.5} relationship during a typical titration in (c) Zn₂Nb₃₄O₈₇-B and (d) Zn₂Nb₃₄O₈₇-N.

Fig. S11. Variation in Li⁺ diffusion coefficient of W₅Nb₁₆O₅₅ calculated from GITT.

Fig. S12. Determination of *b*-values of (a) Zn₂Nb₃₄O₈₇-B and (b) Zn₂Nb₃₄O₈₇-N using

relationship between logarithm of peak current and logarithm of sweep rate.

Fig. S13. XRD spectrum of LiNi_{0.5}Mn_{1.5}O₄.

Fig. S14. (a) low-magnification and (b) high-magnification FESEM images of

 $LiNi_{0.5}Mn_{1.5}O_4.$

Table S1. Results of crystal analyses by Rietveld refinements in $Zn_2Nb_{34}O_{87}$ -B (orthorhombic) with *Amma* space group, $Zn_2Nb_{34}O_{87}$ -N (monoclinic) with *A2/m* space group, and W₅Nb₁₆O₅₅ (monoclinic) with space group of *C2*.

material	<i>a</i> (nm)	<i>b</i> (nm)	<i>c</i> (nm)	α,γ (°)	β (°)	$V(nm^3)$
Zn ₂ Nb ₃₄ O ₈₇ -B	2.871489	0.382780	2.065497	00	00	2.270295
	(11)	(2)	(8)	90	90	(252)
Zn ₂ Nb ₃₄ O ₈₇ -N	1.561179	0.383217	2.066574	00	113.089	1.137327
	(13)	(2)	(14)	90	(6)	(177)
W ₅ Nb ₁₆ O ₅₅	2.970832	0.381905	2.314088	00	126.546	2.109270
	(41)	(4)	(39)	90	(6)	(547)

atom	site	x	у	Z
Zn1	8 <i>f</i>	0.046206	0	0.040711
Nb1	8 <i>f</i>	0.046206	0	0.040711
Nb2	8 <i>f</i>	0.050236	0	0.666035
Nb3	8 <i>f</i>	0.046842	0	0.856061
Nb4	8 <i>f</i>	0.183754	0	0.037185
Nb5	8 <i>f</i>	0.183215	0	0.668334
Nb6	8 <i>f</i>	0.181841	0	0.854427
01	4 <i>c</i>	0.250000	0	0.031265
02	4 <i>c</i>	0.250000	0	0.679758
03	4 <i>c</i>	0.250000	0	0.853859
O4	8 <i>f</i>	0.056530	0	0.541091
05	8 <i>f</i>	0.035402	0	0.144409
O6	8 <i>f</i>	0.036660	0	0.753260
07	8 <i>f</i>	0.039926	0	0.334375
08	8 <i>f</i>	0.024082	0	0.957767
09	8 <i>f</i>	0.114317	0	0.033460
O10	8 <i>f</i>	0.111637	0	0.663379
011	8 <i>f</i>	0.109285	0	0.849359
O12	8 <i>f</i>	0.188744	0	0.573336
O13	8 <i>f</i>	0.180203	0	0.143517
O14	8 <i>f</i>	0.173937	0	0.759216
015	8 <i>f</i>	0.183017	0	0.349929
O16	8 <i>f</i>	0.175322	0	0.953713

Table S2. Fractional atomic parameters of $Zn_2Nb_{34}O_{87}$ -B with space group of *Amma*.

atom*	site	x	у	Z
M1	4i	0.094900	0	0.068931
M2	4 <i>i</i>	0.093568	0	0.688770
M3	4 <i>i</i>	0.095237	0	0.887346
M4	4 <i>i</i>	0.374830	0	0.148083
M5	4i	0.364012	0	0.778313
M6	4i	0.356387	0	0.955579
O1	2d	0.500000	0	0
O2	4i	0.070218	0	0.166963
O3	4i	0.072770	0	0.354527
O4	4i	0.084555	0	0.582856
O5	4i	0.082229	0	0.784255
O6	4i	0.131786	0	0.992904
07	4i	0.214648	0	0.099463
08	4i	0.221544	0	0.730309
O9	4i	0.209007	0	0.920269
O10	4i	0.343510	0	0.062637
011	4 <i>i</i>	0.350924	0	0.253865
012	4 <i>i</i>	0.368872	0	0.387533
013	4 <i>i</i>	0.370454	0	0.664701
O14	4 <i>i</i>	0.359728	0	0.860083
015	4i	0.495672	0	0.192593

Table S3. Fractional atomic parameters of $Zn_2Nb_{34}O_{87}$ -N with space group of A2/m.

 $M = 1/18 Zn^{2+} + 17/18 Nb^{5+}$

	theoretical capacity	capacity in reports	2
material	$(mAh g^{-1})$	$(mAh g^{-1})$	reference
Zn ₂ Nb ₃₄ O ₈₇ -N	389	310	this work
$Zn_2Nb_{34}O_{87}$ -B	389	284	this work
graphite	372	310	[S1]
$Li_4Ti_5O_{12}$	175	169	[S2]
TiNb ₂ O ₇	388	281	[S3]
$Ti_2Nb_{10}O_{29}$	396	247	[S4]
TiNb ₂₄ O ₆₂	402	296	[S5]
Nb ₂ O ₅	403	210	[S6]
FeNb ₁₁ O ₂₉	400	270	[S7]
GaNb ₁₁ O ₂₉	379	264	[S8]
GeNb ₁₈ O ₄₇	386	217	[S9]
PNb ₉ O ₂₅	381	200	[S10]
VNb ₉ O ₂₅	416	220	[S11]
WNb ₁₂ O ₃₃	302	228	[S12]
$W_5Nb_{16}O_{55}$	302	225	[S13]
BaNb _{3.6} O ₁₀	306	264	[S14]
$K_2Nb_8O_{21}$	371	281	[S15]
W ₉ Nb ₈ O ₄₇	289	238	[S16]
W16Nb18O93	228	195	[S17]

Table S4. Comparisons of reversible/theoretical capacity of $Zn_2Nb_{34}O_{87}$ -B/ $Zn_2Nb_{34}O_{87}$ -N with previously reported insertion negative electrode materials.

Table S5. Comparisons of electrochemical performance of $Zn_2Nb_{34}O_{87}$ -B and $Zn_2Nb_{34}O_{87}$ -N with previously reported niobium-based oxide negative electrode materials.

material	current	rate performance	reference	
	rate	$(mAh g^{-1})$	reference	
Zn ₂ Nb ₃₄ O ₈₇ -N	10C	~197 at 1000 th cycles	this work	
$Zn_2Nb_{34}O_{87}$ -B	10C	~ 140 at 1000 th cycles	this work	
W ₅ Nb ₁₆ O ₅₅ micron-sized particles	10C	~111 at 1000 th cycles	Fig. S9c	
TiNb ₂ O ₇ nanoparticles	10C	~ 123 at 500 th cycles	[S18]	
TiNb ₂ O ₇ nanofibers	5C	~ 170 at 500^{th} cycles	[S19]	
TiNb ₂ O ₇ nanorods	10C	~ 140 at 100^{th} cycles	[S20]	
three-dimensional (3D)				
ordered macroporous	10C	~ 87 at 100^{th} cycles	[S21]	
$TiNb_2O_7$				
$Cu_{0.02}Ti_{0.94}Nb_{2.04}O_7$	10C	~ 180 at 1000 th cycles	[S22]	
Ti ₂ Nb ₁₀ O ₂₉ hollow nanofibers	10C	~123 at 500 th cycles	[S23]	
porous Ti ₂ Nb ₁₀ O ₂₉ nanospheres	10C	~141 at 1000 th cycles	[S24]	
porous TiNb ₂₄ O ₆₂ microspheres	10C	~ 183 at 500 th cycles	[85]	
WNb ₁₂ O ₃₃ nanowires	3C	~ 140 at 700^{th} cycles	[S12]	
GeNb ₁₈ O ₄₇ nanofibers	2C	~ 162 at 200 th cycles	[S9]	
VNb9O25 nanoribbons	3C	~ 132 at 500 th cycles	[S11]	
W ₉ Nb ₈ O ₄₇ nanofibers	5C	~ 113 at 1000 th cycles	[S16]	
GaNb11O29 nanowebs	10C	~153 at 1000 th cycles	[S8]	

References

[S1]Y.P. Wu, E. Rahm, R. Holze, Carbon anode materials for lithium ion batteries, J. Power Sources 114 (2003) 228–236.

[S2]T.F. Yi, L.J. Jiang, J. Shu, C.B. Yue, R.S. Zhu, H.B. Qiao, Recent development and application of $Li_4Ti_5O_{12}$ as anode material of lithium ion battery, J. Phys. Chem. Solids 71 (2010) 1236–1242.

[S3]J.T. Han, Y.H. Huang, J.B. Goodenough, New anode framework for rechargeable lithium batteries, Chem. Mater. 23 (2011) 2027–2029.

[S4]X.Y. Wu, J. Miao, W.Z. Han, Y.S. Hu, D.F. Chen, J.S. Lee, J. Kim, L.Q. Chen, Investigation on Ti₂Nb₁₀O₂₉ anode material for lithium-ion batteries, Electrochem. Commun. 25 (2012) 39–42.

[S5]C. Yang, S.J. Deng, C.F. Lin, S.W. Lin, Y.J. Chen, J.B. Li, H. Wu, Porous $TiNb_{24}O_{62}$ microspheres as high-performance anode materials for lithium-ion batteries of electric vehicles, Nanoscale 8 (2016) 18792–18799.

[S6]S.F. Lou, X.Q. Cheng, L. Wang, J.L. Gao, Q. Li, Y.L. Ma, Y.Z. Gao, P.J. Zuo,
C.Y. Du, G.P. Yin, High-rate capability of three-dimensionally ordered macroporous
T-Nb₂O₅ through Li⁺ intercalation pseudocapacitance, J. Power Sources 361 (2017)
80–86.

[S7]X.M. Lou, Z.H. Xu, Z.B. Luo, C.F. Lin, C. Yang, H. Zhao, P. Zheng, J.B. Li, N.Wang, Y.J. Chen, H. Wu, Exploration of Cr_{0.2}Fe_{0.8}Nb₁₁O₂₉ as an advanced anode

material for lithium-ion batteries of electric vehicles, Electrochim. Acta 245 (2017) 482–488.

[S8]X.M. Lou, Q.F. Fu, J. Xu, X. Liu, C.F. Lin, J.X. Han, Y.P. Luo, Y.J. Chen, X.Y. Fan, J.B. Li, GaNb₁₁O₂₉ nanowebs as high-performance anode materials for lithiumion batteries, ACS Appl. Nano Mater. 1 (2018) 183–190.

[S9]F.M. Ran, X. Cheng, H.X. Yu, R.T. Zheng, T.T. Liu, X.F. Li, N. Ren, M. Shui, J. Shu, Nano-structured GeNb₁₈O₄₇ as novel anode host with superior lithium storage performance, Electrochim. Acta 282 (2017) 634–641.

[S10]S. Patoux, M. Dolle, G. Rousse, C. Masquelier, A reversible lithium intercalation process in an ReO₃-type structure PbNb₉O₂₅, J. Electrochem. Soc. 149 (2002) A391–A400.

[S11]S.S. Qian, H.X. Yu, L. Yan, H.J. Zhu, X. Cheng, Y. Xie, N.B. Long, M. Shui, J. Shu, High-rate long-life pored nanoribbon VNb₉O₂₅ built by interconnected ultrafine nanoparticles as anode for lithium-ion batteries, ACS Appl Mater. Interfaces 9 (2017) 30608–30616.

[S12]L. Yan, H. Lan, H.X. Yu, S.S. Qian, X. Cheng, N.B. Long, R.F. Zhang, M. Shui, J. Shu, Electrospun WNb₁₂O₃₃ nanowires: superior lithium storage capability and their working mechanism, J. Mater. Chem. A 5 (2017) 8972–8980.

[S13]K.J. Griffith, K.M. Wiaderek, G. Cibin, L.E. Marbella, C.P. Grey, Niobium tungsten oxides for high-rate lithium-ion energy storage, Nature 559 (2018) 556–563.

[S14]X. Cheng, S.S. Qian, H.X. Yu, H.J. Zhu, Y. Xie, R.T. Zheng, T.T. Liu, M. Shui,
J. Shu, BaNb_{3.6}O₁₀ nanowires with superior electrochemical performance towards ultrafast and highly stable lithium storage, Energy Storage Mater. 16 (2019) 400–410.
[S15]X. Cheng, H.J. Zhu, H.X. Yu, W.Q. Ye, R.T. Zheng, T.T. Liu, N. Peng, M. Shui,
J. Shu, K₂Nb₈O₂₁ nanotubes with superior electrochemical performance for ultrastable lithium storage, J. Mater. Chem. A 6 (2018) 8620–8632.

[S16]L. Yan, X. Cheng, H.X. Yu, H.J. Zhu, T.T. Liu, R.T. Zheng, R.F. Zhang, M. Shui, J. Shu, Ultrathin W₉Nb₈O₄₇ nanofibers modified with thermal NH₃ for superior electrochemical energy storage, Energy Storage Mater. 14 (2018) 159–168.

[S17]W.Q. Ye, H.X. Yu, X. Cheng, H.J. Zhu, R.T. Zheng, T.T. Liu, N.B. Long, M. Shui, J. Shu, Highly efficient lithium container based on non-Wadsley-Roth structure Nb₁₈W₁₆O₉₃ nanowires for electrochemical energy storage, Electrochim. Acta 292 (2018) 331–338.

[S18]S.F. Lou, Y.L. Ma, X.Q. Cheng, J.L. Gao, Y.Z. Gao, P.J. Zuo, C.Y. Du, G.P. Yin, Facile synthesis of nanostructured TiNb₂O₇ anode materials with superior performance for high-rate lithium ion batteries, Chem. Commun. 51 (2015) 17293–17296.

[S19]H. Park, T. Song, U. Paik, Porous $TiNb_2O_7$ nanofibers decorated with conductive $Ti_{1-x}Nb_xN$ bumps as a high power anode material for Li-ion batteries, J. Mater. Chem. A 3 (2015) 8590–8596.

[S20]L. Hu, C.F. Lin, C.H. Wang, C. Yang, J.B. Li, Y.J. Chen, S.W. Lin, TiNb₂O₇ nanorods as a novel anode materials for secondary lithium-ion batteries. Funct. Mater. Lett. 9 (2016) 1642004.

[S21]S.F. Lou, X.Q. Cheng, Y. Zhao, A. Lushington, J.L. Gao, Q. Li, P.J. Zuo, B.Q. Wang, Y.Z. Gao, Y.L. Ma, C.Y. Du, G.P. Yin, X.L. Sun, Superior performance of ordered macroporous TiNb₂O₇ anodes for lithium ion batteries: understanding from the structural and pseudocapacitive insights on achieving high rate capability, Nano Energy 34 (2017) 15–25.

[S22]C. Yang, C.F. Lin, S.W. Lin, Y.J. Chen, J.B. Li, Cu_{0.02}Ti_{0.94}Nb_{2.04}O₇: an advanced anode material for lithium-ion batteries of electric vehicles, J. Power Sources 328 (2016) 336–344.

[S23]Q.F. Fu, J.R. Hou, R.H. Lu, C.F. Lin, Y. Ma, J.B. Li, Y.J. Chen, Electrospun $Ti_2Nb_{10}O_{29}$ hollow nanofibers as high-performance anode materials for lithium-ion batteries, Mater. Lett. 214 (2018) 60–63.

[S24]S.F. Lou, X.Q. Cheng, J.L. Gao, Q. Li, L. Wang, Y. Cao, Y.L. Ma, P.J. Zuo,
Y.Z. Gao, C.Y. Du, H. Huo, G.P. Yin, Pseudocapacitive Li⁺ intercalation in porous
Ti₂Nb₁₀O₂₉ nanospheres enables ultra-fast lithium storage, Energy Storage Mater. 11
(2018) 57–66.