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Synthesis Method
NH4V3O8∙1.9H2O (AVO-1) was synthesized through a hydrothermal method. In a typical 
synthesis, 1 g commercial V2O5 power was added into 5 mL ammonium hydroxide (28-30%). 
Subsequently, 40 mL of 0.1 M oxalic acid was added into the above solution, and the mixed 
solution was stirred for 30 min at room temperature. Later, the pH of the solution was adjusted to 
3 by dropwise adding the hydrochloric acid (36%). Then, the solution was transferred into a 100 
mL Teflon-lined autoclave and kept at 190 °C for 5 h. Finally, the product, AVO-1 was collected, 
washed with deionized water and ethanol several times, and then dried at 60 °C overnight. 
NH4V4O10∙1.6H2O (AVO-2) was synthesized by the same procedure, except for adding 40 mL of 
0.2 M oxalic acid.
The quasi-solid-state electrolyte was prepared by the following procedure: 1g gelatin power was 
mixed with 5 mL of 1 M ZnSO4 aqueous solution and kept stirring at 75 °C for 3 h. Later, the 
mixed solution was poured on a silicon wafer at room temperature to achieve the gel, which serves 
as the gel electrolyte.

Materials characterization
The X-ray diffraction (XRD) data were collected at a constant scanning rate of 2° min-1 on a Rigaku 
MiniFlex X-ray diffractometer with Cu Kα radiation (λ = 1.5405 Å). Scanning electron 
microscopy (SEM) imaging was carried out on a FEI Quanta 3D FEG field emission scanning 
electron microscopy (FESEM). Transmission electron microscopy (TEM) and high-resolution 
TEM (HRTEM) imaging was performed on a JEOL JEM-2010 microscope at 200 kV. X-ray 
photoelectron spectroscopy (XPS) measurements were recorded by an AXIS165 spectrometer. 
Thermogravimetry (TG) data were collected using an SII STA7300 analyzer under the nitrogen 
atmosphere.

Electrochemical characterization:
The working electrode was fabricated by rolling 60 wt% active material, 30 wt% conductive 
carbon (Super P), and 10 wt% polytetrafluoroethylene (PTFE) into thin film. For the aqueous 
batteries, Zinc foil, 3 M zinc trifluoromethanesulfonate (Zn(CF3SO3)2) or ZnSO4 aqueous solution, 
and glass fiber membrane were used as the anode, electrolyte, and separator, respectively, which 
were assembled in 2032 coin-type cells. For the quasi-solid-state batteries, flexible Zinc foil and 
gelatin/ZnSO4 gel electrolyte were employed as anode and electrolyte, correspondingly. 
Galvanostatic charge-discharge experiments were carried out on an eight-channel battery analyzer 
(MTI corporation) with a voltage range of 0.2- 1.4 V. Cyclic voltammetry measurements and 
Electrochemical Impedance Spectroscopy was conducted on an electrochemical workstation (CHI 
6504C) with a frequency range from 100 kHz to 0.01 Hz. Galvanostatic intermittent titration 
technique (GITT) measurements were operated on a potentiostat (VMP3, Bio-Logic). Before the 
GITT measurement, the assembled cell was first discharged and charged at 100 mA g-1 for one 
cycle to obtain a stable state. Subsequently, the assembled cell was discharged or charged at 50 
mA g-1 for 30 min, and then rested for 60 min to make the voltage reach the equilibrium. The 
procedure was repeatedly applied to the cell during the entire charge-discharge process until 
reaching to the cut-off voltage (0.2 / 1.4 V).  



Figure S1. (a) XRD pattern and the inset showing the crystal structure, (b-c) SEM images, (d-e) 
TEM images, and (f) TGA result of the AVO-2.  
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Figure S2. Discharge-charge profiles of the AVO-1 electrode at 0.1 A g-1.



Figure S3. (a) CV curves at a scan rate of 0.1 mV s-1 in the initial three cycles, (b) rate 
performance, and (c) long-term cycling performance at the current density of 5 A g-1 of the 
AVO-2 electrode.

Figure S4. Cycling property of AVO-1 employing 3M ZnSO4 aqueous electrolyte in the voltage 
range of 0.2-1.4 V at 5A g-1.



Figure S5. (a) CV profiles of the Zn/AVO-2 cell at different scan rates. (b) Log i versus log v 
plots at selected reduction/oxidation states based on the CV data. (c) CV curve showing the 
capacitive contribution (gray area) at 0.6 mV s-1. (d) GITT curves of AVO-2 electrode. (e) 
Calculated diffusion coefficient of Zn2+ vs. various Zn2+ insertion/extraction states of AVO-2.

Figure S6. Electrochemical impedance spectroscopy curves of Zn/AVO-1 and Zn/AVO-2 

aqueous batteries at the first charged state.
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Figure S7. Ex situ XRD patterns of the AVO-1 cathode at various electrochemical states under 

the current density of 0.2 A g-1.



Figure S8. Ex situ XPS spectra of AVO-1 electrodes at various electrochemical states: (a-c) Zn 

2p, (d-f) V 2p, (g-i) N 1s at the pristine, fully discharged, and fully charged states, respectively.



Figure S9. Rate capability of the QSS Zn/AVO-1 battery ranging from 0.1 A g-1 to 1 A g-1.

Figure S10. (a) Discharge-charge curves at 0.1 A g-1 and (b) CV profile at a scan rate of 0.5 mV 

s-1 of AVO-1 electrode in QSS batteries.



Figure S11. EIS curves of QSS Zn/AVO-1 battery at the first charged state.  

Figure S12. XRD pattern of Zn anode at the first fully discharged state in QSS Zn/AVO-1 cell 

with 2 theta of (a) 5-80°, (b) 5-30°.



Table S1. Comparison of our work with previous reported vanadium-based cathode materials on 

the electrochemical performances for aqueous zinc-ion battery.

Electrodes
Specific capacity 

(mAh g-1)/ Current 
density (mA g-1)

Long-term cycling capacity 
(mAh g-1) after x cycles at y 

mA g-1 with a capacity 
retention of z

Reference

NH4V3O8∙1.9H2O 463/ 100 233  (x=1000, y=5000, z=87%)
166  (x=2000, y=10000, z=81%)

Present 
work

V2O5·nH2O 381/ 60 200  (x=900, y=6000, z=71%) 1

VO2 (B) 357/ 100 250  (x=300, y=2000, z=91%) 2                     

V3O7∙H2O 375/ 375 216  (x=200, y=3000, z=80%) 3          

VO1.52(OH)0.77 140/ 15 105  (x=50, y=15, z=70%) 4

VS2 190/ 50 111  (x=200, y=500, z=98%) 5

LiV3O8 280/ 16 150  (x=65, y=133, z=75%) 6

Na1.1V3O7.9@rGO 238/ 50 171  (x=100, y=300, z=76%) 7

NaV3O8∙1.35H2O 366/ 100 200  (x=200, y=10000, z=100%) 8

Na3V2(PO4)3/C 97/ 50 72  (x=100, y=50, z=74%) 9

K2V8O21 247/ 300 208  (x=300, y=6000, z=83%) 10

Zn0.25V2O5·nH2O 300/ 50 208  (x=1000, y=2400, z=80%) 11

Zn3V2O7(OH)2·2H2O 213/ 50 101  (x=300, y=200, z=68%) 12
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