Electronic Supplementary Information

Sulfurization-Induced Edge Amorphization in Copper-Nickel-Cobalt Layered Double Hydroxide Nanosheets Promoting Hydrazine

Electro-Oxidation

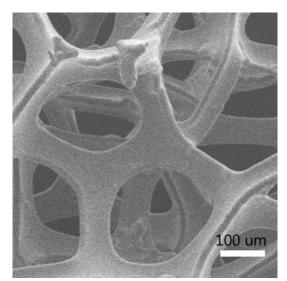


Fig. S1 SEM image of the bare nickel foam.

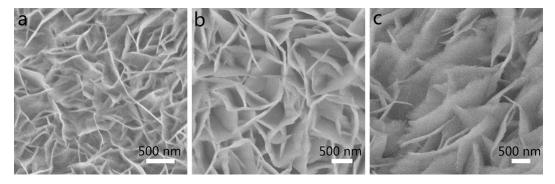


Fig. S2 SEM images of (a) LDH-1, (b) LDH-2 and (c) LDH-4.

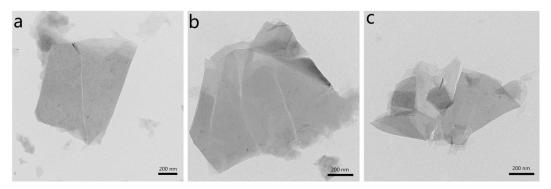


Fig. S3 TEM images of the LDH nanosheet with (a) 0%, (b) 1% and (c) 10% Cu.

Fig. S4 Image of the LDH-3 (green) and S-LDH-3 (black).

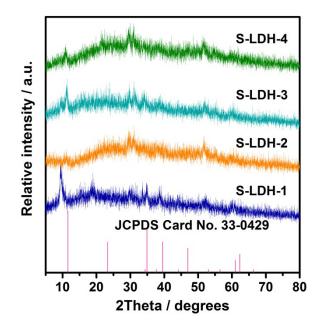


Fig. S5 XRD patterns of the S-LDH nanosheets separated from the nickel foam.

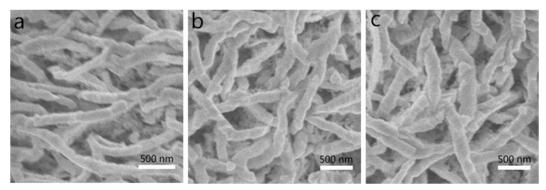


Fig. S6 SEM images of (a) S-LDH-1, (b) S-LDH-2 and (c) S-LDH-4.

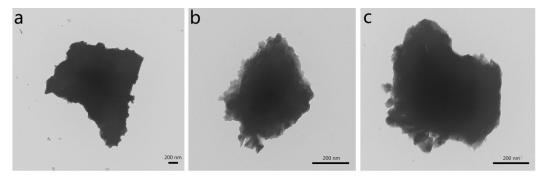
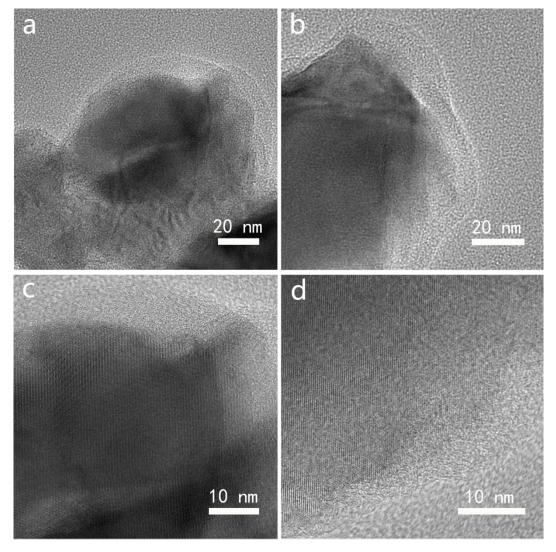



Fig. S7 (a-c) TEM images of the sulfurized samples with (a) 0%, (b) 1% and (c) 10% Cu.

Fig. S8 Additional HRTEM images of the S-LDH-3, where the sulfurization-induced edge amorphization can be clearly revealed.

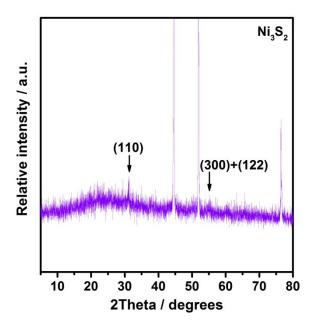


Fig. S9 XRD pattern of S-NF, from which the Ni_3S_2 phase can be identified.

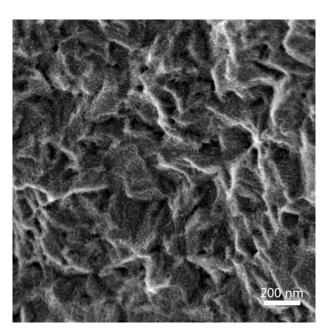
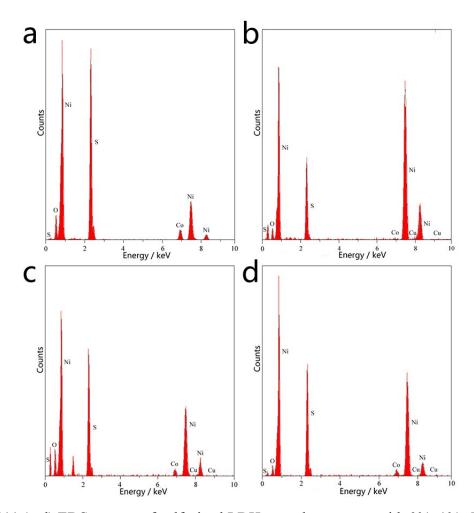
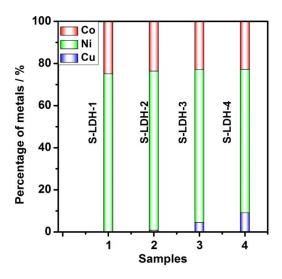
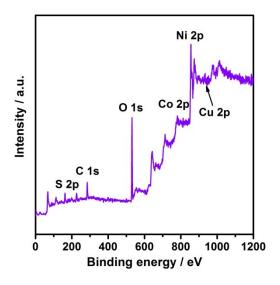
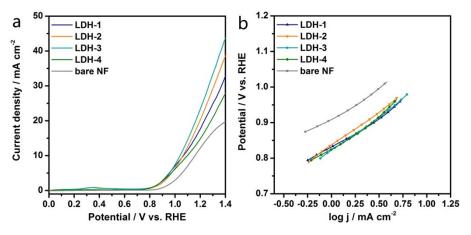
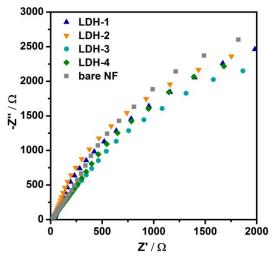




Fig. S10 SEM image of S-NF.

Fig. S11 (a-d) EDS spectra of sulfurized LDH nanosheet arrays with 0%, 1%, 5% and 10% Cu.

Fig. S12 The inductively coupled plasma optical emission spectrometry (ICP-OES) results of the sulfurized LDH nanosheet arrays.


Fig. S13 XPS survey spectrum of the S-LDH-3.

Samples	mass	Samples	mass	Load weight	Samples	mass	Load weight
	/mg		/mg	/ mg		/mg	/ mg
bare NF-1	356.8	LDH-1	383.2	26.4	S-LDH-1	371.8	15.0
bare NF-2	332.1	LDH-2	366.9	34.8	S-LDH-2	349.7	17.6
bare NF-3	339.7	LDH-3	375.0	35.3	S-LDH-3	355.5	15.8
bare NF-4	322.8	LDH-4	353.7	30.9	S-LDH-4	337.5	14.7

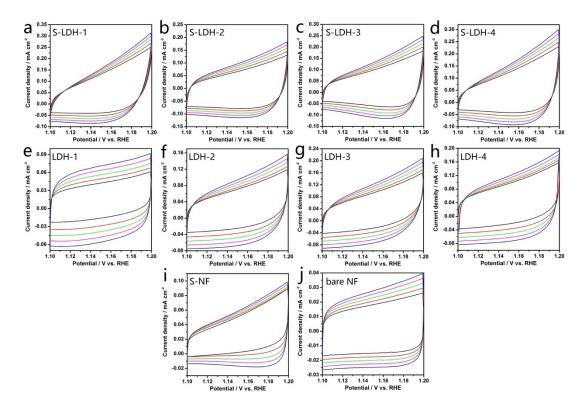

Table S1 Loading weights of the samples.

Fig. S14 (a) Polarization curves of CuNiCo LDH nanosheet arrays and (b) Corresponding Tafel plots.

Fig. S15 Nyquist plots of CuNiCo LDH nanosheet arrays and bare nickel foam measured at 0.4 V vs. RHE.

Fig. S16 (a-j) CV curves of various catalysts measured at a non-redox region in 0.1M KOH for the calculation of electrochemical double-layer capacitances.

The effective active surface area of the samples was estimated according to the literature.¹ Cyclic voltammetry (CV) was performed at various scan rates (12, 14, 16...20 mV s⁻¹, etc) in 1.1-1.2 V vs. RHE region. The electrochemical double-layer capacitance (C_{dl}) of various samples can be determined from the cyclic voltammograms, which is expected to be linearly to the effective surface area (Fig.

S16). The double-layer capacitance is estimated by plotting the ΔJ (J_a-J_c) at 1.15 V vs. RHE against the scan rate, where the slope is twice C_{dl}. The calculated values of electrochemical double-layer capacitance are listed in Table S2.

Samples	$C_{dl} [mF cm^{-2}]$
S-LDH-1	4.2
S-LDH-2	4.3
S-LDH-3	5.2
S-LDH-4	5.0
LDH-1	4.3
LDH-2	4.1
LDH-3	4.9
LDH-4	4.5
S-NF	1.6
bare NF	1.2

Table S2. List of the electrochemical double-layer capacitance (C_{dl}) .

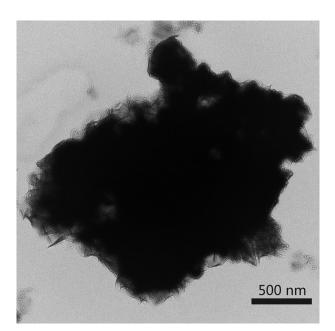


Fig. S17 TEM image of the S-LDH-3 after 20h stability test.

Reference

1. Xie, J.; Zhang, J.; Li, S.; Grote, F.; Zhang, X.; Zhang, H.; Wang, R.; Lei, Y.; Pan, B.; Xie, Y. *J. Am. Chem. Soc.* **2013**, *135*, 17881.