Supporting Information

Simple and scalable synthesis of hierarchical porous carbon derived from cornstalk without pith for high capacitance and energy density

Jiaming Li, [†] Qimeng Jiang, [†] Lansheng Wei, Linxin Zhong^{*} and Xiaoying Wang^{*}

State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and

Engineering, South China University of Technology, Guangzhou, 510640, China

* Corresponding author.

E-mail: Jiaming Li (jmjamiegrace@gmail.com); Qimeng Jiang

(qimengjiang@foxmail.com); Lansheng Wei (lansheng0312@foxmail.com); Linxin

Zhong (<u>lxzhong0611@scut.edu.cn</u>); Xiaoying Wang (<u>xyw@scut.edu.cn</u>).

[†] Authors with equal contributions to this work.

Sample	Carbon precursor	Carbon precursor: K ₂ C ₂ O ₄ : CaCO ₃ (by weight)	
BC	entire plant	/	
C-1	entire plant	1:1:1	
R-1.5	rind	1:1.5:1	
P-1.5	pith	1:1.5:1	
C-1.5	entire plant	1:1.5:1	
C-2	entire plant	1:2:1	
R-2	rind	1:2:1	

Table S1. Corn stalk-based porous carbon with different reaction condition.

Figure S1. SEM images of C-1 (a) and C-2 (b); TEM images of C-1 (c) and C-2 (d).

Figure S2. XPS survey spectra of C-1 and R-2 (a); high-resolution O1s spectra of C-1 (b) and R-2 (c).

	XPS composition (at%)			O species (%)		
Sample	С	Ν	0	01	02	03
BC	77.22	2.68	20.1	28.2	29.4	42.4
C-1	91.20	2.30	6.47	25.1	28.6	46.3
C-1.5	90.29	2.74	6.97	42.8	29.6	27.6
R-1.5	89.34	1.81	8.85	51.7	23.1	25.2
C-2	92.93	1.20	5.87	40.3	20.2	39.5
R-2	91.00	1.20	7.80	34.2	23.3	42.4

Table S2. Relative concentrations of oxygen species by fitting the O1s XPS spectra.

Figure S3. CV curves (a) and GCD curves (b) of C-1.

Figure S4. CV curves (a) and GCD curves (b) of C-2.

Figure S5. CV curves (a) and GCD curves (b) of R-2.

Figure S6. CV curves of C-1.5 symmetrical supercapacitor in different operation voltages at a scan rate of 20 mV s⁻¹ (a); CV curves of C-1.5 symmetrical supercapacitor at different scan rates (b); GCD curves of C-1.5 symmetrical supercapacitor at different current densities (c); specific capacitances for a single electrode at different current densities (d).

Figure S7. Cycle stabilities of C-1.5 at a current density of 10.0 A g⁻¹ (a) and Ragone plots compared with other carbon materials in aqueous electrolyte (b).