Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

One-step Synthesis of Hierarchical Self-supported WS₂ Film for Efficient Electrocatalytic Hydrogen Evolution

Min Wang¹, Li Zhang², Meirong Huang¹, Qifan Zhang¹, Xuanliang Zhao¹, Yijia He¹, Shuyuan Lin¹, Jialiang Pan¹, Hongwei Zhu¹

 ¹State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
²Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

Figure S1. (a) Chemical mappings of W species and S species. (b) EDS pattern of WS₂-600°C-20 film.

Figure S2. SEM images of (a) WS₂-500°C-20, (b) WS₂-600°C-20, (c) WS₂-700°C-20, (d) WS₂-800°C-20, (e) WS₂-900°C-20, and (f) WS₂-1000°C-20 films.

Figure S3. (a) Low- and (b) high-magnification SEM images of WS₂-600°C-20 film after cycling test. (c) Comparison of XRD patterns of WS₂-600°C-20 film before and after cycling test.

Fig S4. SEM images of (a) WS₂-600°C-20-2min, (b) WS₂-600°C-20-10min, (c) WS₂-600°C-20-50min. (d) Polarization curves, (e) electrochemical impedance spectra and (f) linear fittings of the capacitive current densities at different scan rates of WS₂-600°C-20 films with different reaction times.

Figure S5. (a) XRD patterns, (b) Raman spectra of WS_2 -600°C films with different molar ratios of W/S.

Figure S6. Tafel plot of WS₂-600°C-10 film.

Figure S7. Electrochemical double-layer capacitance measurements of WS₂ films at different scan rates (20, 40, 60, 80, and 100 mV s⁻¹). (a) WS₂-500°C-20, (b) WS₂-700°C-20, (c) WS₂-800°C-20, (d) WS₂-900°C-20, (e) WS₂-600°C-10, (f) WS₂-600°C-20, (g) WS₂-600°C-40, and (h) WS₂-600°C-80.

Catalyst	Substrate	Method	Overpotential η mV/10 mA cm ⁻²	Tafel slope [mV dec ⁻¹]	Stability
2H-WS ₂ (this work)	W foil	SACVT	137	54	200 h
WS ₂ nanoflakes ¹	ITO	exfoliation	~350	200	N/A
WS ₂ nanosheets ²	o-carbon fiber	hydrothermal	278	99	1000 cycles
WS ₂ nanosheets ³	Au foil	CVD	~320	100	1000 cycles
1T' WS ₂ nanoparticles ⁴	glassy carbon	colloidal	200	50.4	46 days
2H-WS ₂ nanoplates ⁵	glassy carbon	thermal treatment	280	60	8 h
2H-WS ₂ nanosheets ⁶	glassy carbon	exfoliation	205	70	500 cycles
1T-WS ₂ nanodots ⁷	graphite disks	exfoliation	151	70	500 cycles
WS ₂ nanoribbons ⁸	glassy carbon	solvothermal	225	68	1000 cycles
WS ₂ nanoflakes ⁹	glassy carbon	solvothermal	100	48	10000 cycles
1T' WS ₂ nanosheets 10	glassy carbon	exfoliation	~220	60	10000 cycles
WS_2 film ¹¹	carbon cloth	thermal treatment	~210	68	3 h

Table S1. Comparison of the electrocatalytic activities of WS_2 film with reported WS_2 structures for HER.

References

- 1. C. L. Choi, J. Feng, Y. Li, J. Wu, A. Zak, R. Tenne and H. J. Dai, *Nano Research*, 2013, 6, 921-928.
- 2. X. Shang, K. L. Yan, Z. Z. Liu, S. S. Lu, B. Dong, J. Q. Chi, X. Li, Y. R. Liu, Y. M. Chai and C. G. Liu, *Appl. Surf. Sci.*, 2017, **402**, 120-128.
- Y. Zhang, J. Shi, G. Han, M. Li, Q. Ji, D. Ma, Y. Zhang, C. Li, X. Lang, Y. Zhang and Z. Liu, *Nano Research*, 2015, 8, 2881-2890.
- Z. Liu, N. Li, C. Su, H. Zhao, L. Xu, Z. Yin, J. Li and Y. Du, *Nano Energy*, 2018, 50, 176-181.
- 5. S. Yu, J. Kim, K. R. Yoon, J. W. Jung, J. Oh and I. D. Kim, *ACS Appl. Mater. Interfaces*, 2015, 7, 28116-28121.
- G. Q. Han, Y. R. Liu, W. H. Hu, B. Dong, X. Li, Y. M. Chai, Y. Q. Liu and C. G. Liu, Mater. Chem. Phys., 2015, 167, 271-277.
- M. A. Lukowski, A. S. Daniel, C. R. English, F. Meng, A. Forticaux, R. J. Hamers and S. Jin, *Energy Environ. Sci.*, 2014, 7, 2608-2613.
- 8. J. Lin, Z. Peng, G. Wang, D. Zakhidov, E. Larios, M. J. Yacaman and J. M. Tour, *Adv. Energy Mater.*, 2014, **4**, 1301875.

- 9. L. Cheng, W. Huang, Q. Gong, C. Liu, Z. Liu, Y. Li and H. Dai, *Angew. Chem. Int. Ed.*, 2014, **53**, 7860-7863.
- D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda and M. Chhowalla, *Nat. Mater.*, 2013, 12, 850-855.
- 11. T.-Y. Chen, Y.-H. Chang, C.-L. Hsu, K.-H. Wei, C.-Y. Chiang and L.-J. Li, *Int. J. Hydrogen Energy*, 2013, **38**, 12302-12309.