Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Figure S1 (a) Bipolar P-E loops; (b) Bipolar S-E loops for BF-BT-xNLN ceramics.

Figure S2. Frequency-dependent permittivity and loss curves for BF-0.3BT-xNLN with (a) x=0, (b) x=0.005, (c) x=0.01, (d) x=0.02 and (e) x=0.03; (f) Temperature-dependent permittivity and loss curves at 100 kHz for BF-BT-xNLN ceramics.

Figure S3. (a) $\{111\}_p$ and (b) $\{200\}_p$ XRD reflections at 0 and 60 kV cm⁻¹ for BF-0.3BT at $\beta = 0^\circ$; d-spacing and FWHM of (c) $\{111\}_p$ and (d) $\{200\}_p$ XRD reflection at $\beta = 0^\circ$ obtained from the *in-situ* XRD experiment for BF-0.3BT, with two cycles of electric field poling under ± 60 kV cm⁻¹

Figure S4. Contour plots of the {111}, {200} and {220} peak profiles at (a) $\beta = 0^{\circ}$ and (b) $\beta = 90^{\circ}$ obtained from the *in-situ* XRD experiment for BF-0.3BT-0.005NLN, with two cycles of electric field poling under ± 60 kV cm⁻¹; effective lattice strains calculated from representative peaks with grain orientations of (c) $\beta = 0^{\circ}$ and (d) $\beta = 90^{\circ}$ for BF-0.3BT-0.005NLN; (e) Total estimated macroscopic strain for $\beta = 0^{\circ}$ and $\beta = 90^{\circ}$ for BF-0.3BT-0.005NLN; (f) Directly measured macroscopic S-E loop for BF-0.3BT-0.005NLN.

Figure S5 Contour plots of the {111}, {200} and {220} peak profiles at (a) $\beta = 0^{\circ}$ and (b) $\beta = 90^{\circ}$ obtained from the *in-situ* XRD experiment for BF-0.3BT-0.02NLN, with two cycles of electric field poling under ± 60 kV cm⁻¹; Effective lattice strains calculated from representative peaks with grain orientations of (c) $\beta = 0^{\circ}$ and (d) $\beta = 90^{\circ}$ for BF-0.3BT-0.02NLN; (e) Total estimated macroscopic strain for $\beta = 0^{\circ}$ and $\beta = 90^{\circ}$ for BF-0.3BT-0.02NLN; (f) Directly measured macroscopic S-E loop for BF-0.3BT-0.02NLN.

Figure S6. (a) $\{111\}_p$ and (b) $\{200\}_p$ XRD reflections at 0 and 60 kV cm⁻¹ for BF-0.3BT-0.03NLN at $\beta = 0^\circ$; d-spacing and FWHM of (c) $\{111\}_p$ and (d) $\{200\}_p$ XRD reflection at $\beta = 0^\circ$ obtained from the *in-situ* XRD experiment for BF-0.3BT-0.03NLN, with two cycles of electric field poling under \pm 60 kV cm⁻¹.

Figure S7 Effective lattice strains calculated from representative peaks with grain orientations of (a) β = 0° and (b) β = 90°, obtained from the *in-situ* XRD experiment for 5%BiScO₃ doped BF-BT ceramics, with two cycles of electric field poling under ± 50 kV cm⁻¹

Figure S8 Effective lattice strains calculated from representative peaks with grain orientations of (a) $\beta = 0^{\circ}$ and (b) $\beta = 90^{\circ}$, obtained from the *in-situ* XRD experiment for 5%BiMg_{2/3}Nb_{1/3}O₃ doped BF-BT ceramics, with two cycles of electric field poling under ± 60 kV cm⁻¹